

HARPA BIRGISDOTTIR

DANISH BUILDING RESEARCH INSTITUTE
AALBORG UNIVERSITY COPENHAGEN

Drivers for the use of buildings LCA and the need for benchmarks

- DGNB certification in Denmark
 - since 2011/2012
- Preparation of the Voluntary Sustainability Class in the Building Code
 - since 2014/still ongoing

BENCHMARKS

Ongoing journey

Depending on methodology which is constantly being improved due to increased research and knowledge from application

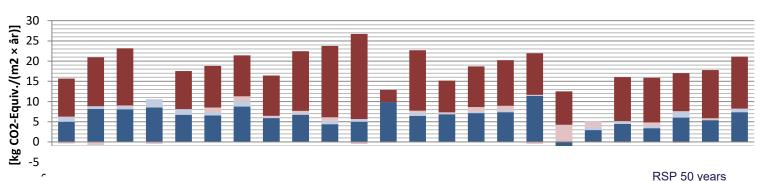
"THE OLD METHOD"

DGNB: 2011-2018 - using the Excel tool

- Method
 - Static energy approach, module D
 - 2012: German benchmarks for 50 years only adjusted within GFA/NFA
 - Technical groups agreed on the need to accommodate long lasting materials in sustainable buildings – it was questioned if 50 years could reward that
 - 2014: Further adjustment of the German benchmarks

Short RSP 50 years A1-A3, B4, C3-C4, D + B6 Results weight 70%

+


Long RSP 80-120 years A1-A3, B4, C3-C4, D Results weight 30%

Experiences with bencmarks from certification

Usually enough to lower operational energy - No focus on embodied

GWP

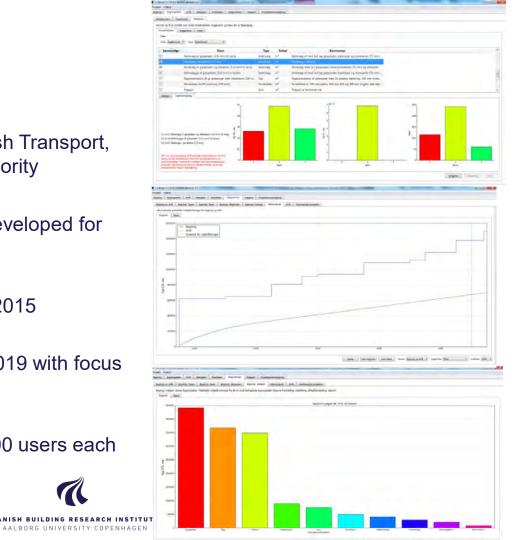
Operation (B6)

End of life (C3,C4,D

Replacements (B4)

Production (A1-A3)

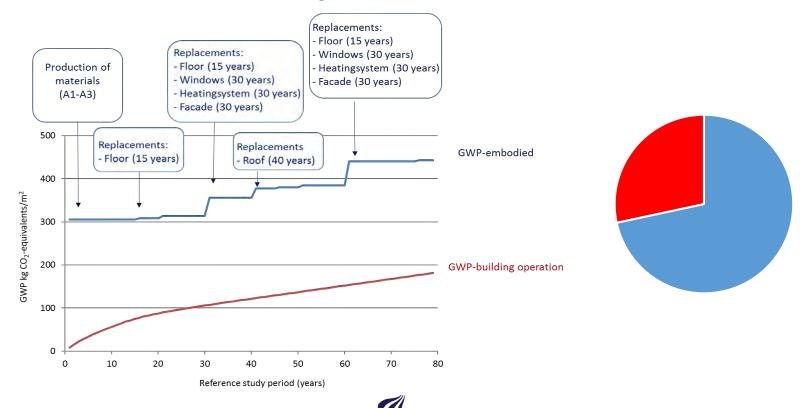
Case



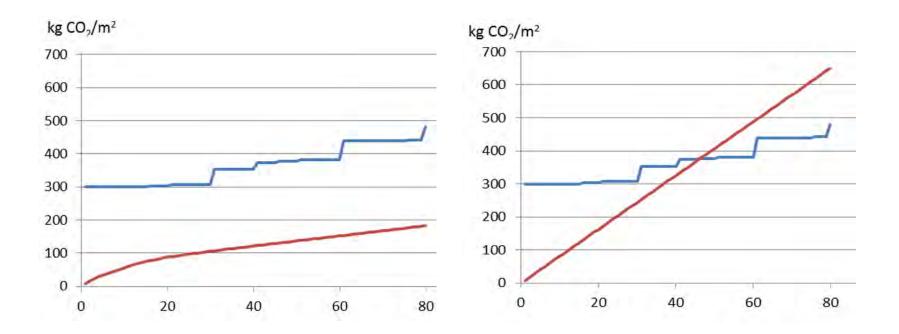
THE FIRST STEPS TO "THE NEW METHOD"

National tool - LCAbyg

- Developed by SBi for the Danish Transport, Construction and Housing Authority
- National freely available tool developed for the Danish building sector
- First version launched in April 2015
- New beta version in January 2019 with focus on early design stages
- Over 3000 users, about 300-500 users each month

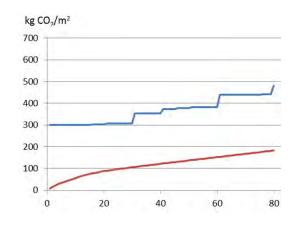


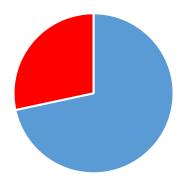
DGNB 2018 - using LCAbyg

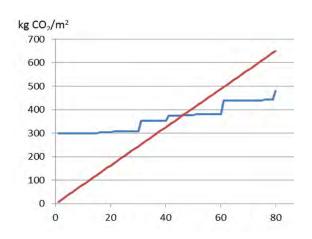

- LCAbyg tool applied with the new methods
 - Long RSP (80-120 years)
 - Dynamic energy approach
 - Excluding module D
- Need for new benchmarks based on Danish cases
- First "beta version of benchmarks" developed based on limited amount of building cases
 - 16 offices and 7 residential buildings

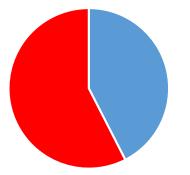
Life cycle assessment benchmarks for Danish office buildings. Rasmussen, F. N. & Birgisdottir, H., IALCCE 2018 LCA benchmarks for residential buildings in Northern Italy and Denmark - Learnings from comparing two different contexts. Rasmussen, F. N., & Birgisdottir, H., Building Research and Information 2019.

Results for an office building based on this method




Consequences of using forecasting versus static





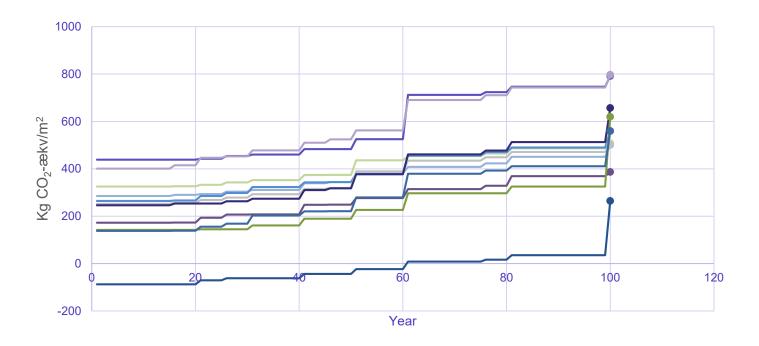
Consequences of how results are presented

NEW CROSSROADS

Need for benchmarks for the Voluntary Sustainability Class in the Building Code has asked for development of benchmarks based on larger set of cases and review of the method behind

POSSIBILITIES FOR REEVALUATION OF "THE NEW METHOD"

Year 2019 - Development of new set of benchmarks


- Recommendations on benchmarks for Danish buildings in use for VSC which also can be used for DGNB
- Expanding the pull of data behind

Focus: Offices and Residential buildings

- Residential (34 cases)
- Offices (22 cases)
- Continue the development of a robust method
- Thorough description of methodology including the completeness of the LCA
- Reconsideration of RSP (50, 60, 80 or 100 years)

There is a large potential to reduce the embodied impacts

The goals and the effects

- The use of LCA in DGNB
 - Increased experience within the building sector with LCA
 - Drivers Methods and tools have been developed
 - Building cases that can be used for development of benchmarks
- Preparation of the Voluntary Sustainability Class in the Building Code
 - Free available national tool for LCA has been developed (LCAbyg)
 - Evaluation of building cases and development of methodology description
 - Focus on initial impacts (construction), and focus also on embodied impacts
 - We are able to develop the requirements for buildings (voluntary or not) that can be improved over time