#### **ETH** zürich



# Environmental risk assessment of enhanced geothermal systems (EGS) incl. seismic risks

#### Stephan Pfister

68th LCA Forum (DF68) on "LCA of key technologies for future electricity supply" 16 April 2018; Zurich



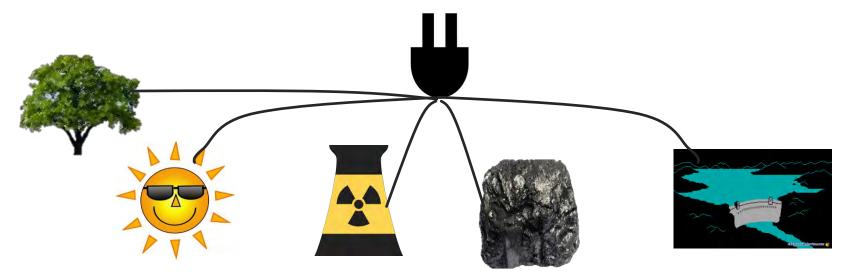


### Presentation based on collaboration with

- Dr. Kathrin Menberg,
- Prof. Peter Bayer,
- Prof. Philipp Blum:

Paper: "A matter of meters: State of the art in the life cycle assessment of enhanced geothermal systems." Energy and Environmental Science, 9(9).

Patrick Hädener:

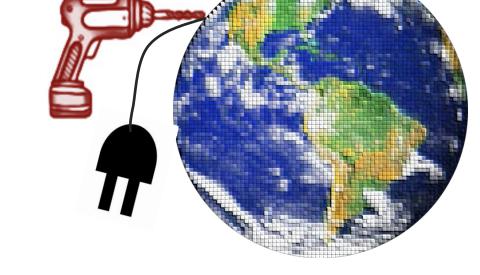

Bachelor Thesis on EGS and seismicity



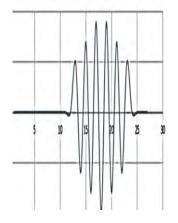


# **Future Energy Systems**

- Electricity demand is still rising
  - Fossil and nuclear fuels to be outphased
  - Hydropower potential largely utilized
  - PV and Wind: variability problems (+ Swiss conditions not optimal)
  - Biomass potential limited






**Enhanced Geothermal Systems (EGS)** 

- Emerging technology
- Very low LCA impacts
- Potential in Switzerland



Seismicity problem



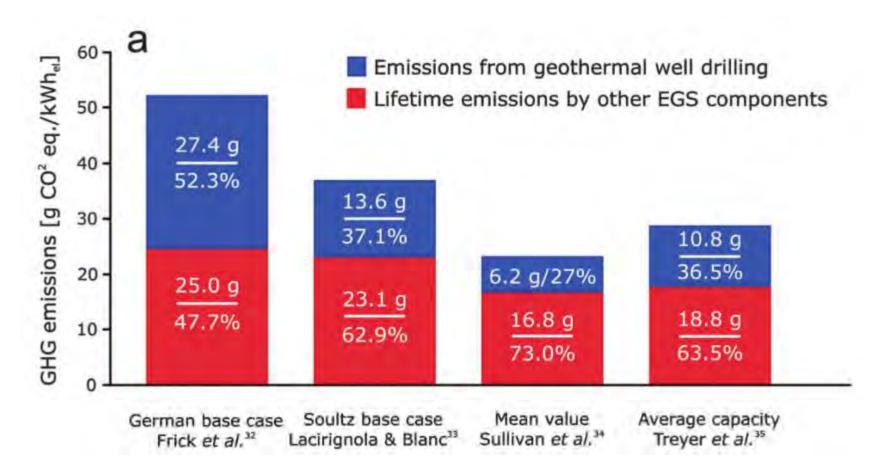




# Geothermal energy (Menberg et al. 2016)

- Literature review of existing studies
  - Integrating model into a single one
  - Borehole drilling most relevant



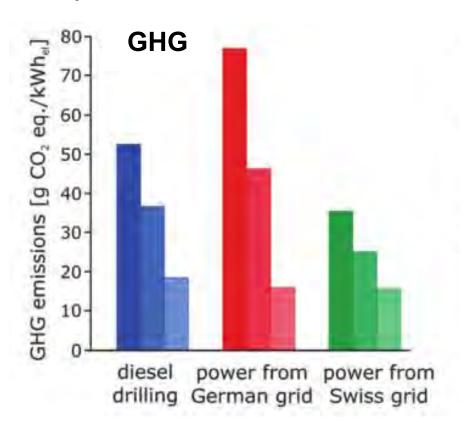

- Definition of scenarios (incl. learning effects)
  - New drilling technology
  - Co-generation
- Approach:
  - Electric drilling (net energy production approach)
  - Model impact as function of borehole

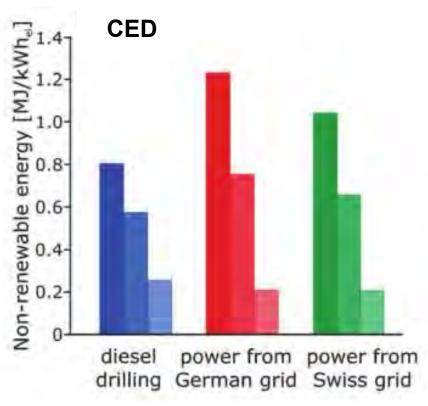




### **Previous LCA**

25-50% from drilling

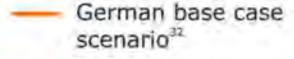




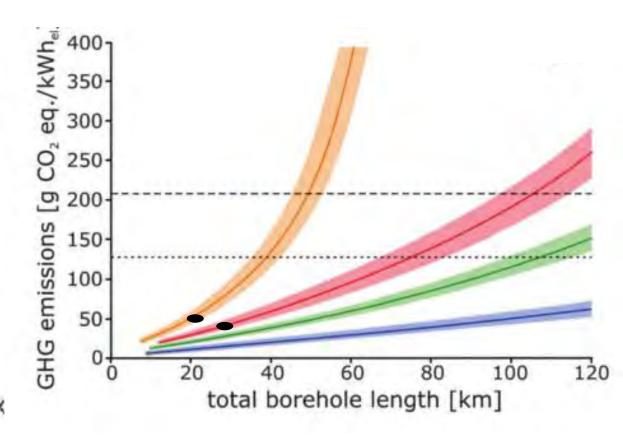

# **Drilling options: diesel, electricity**

Impacts for 3 different scenarios



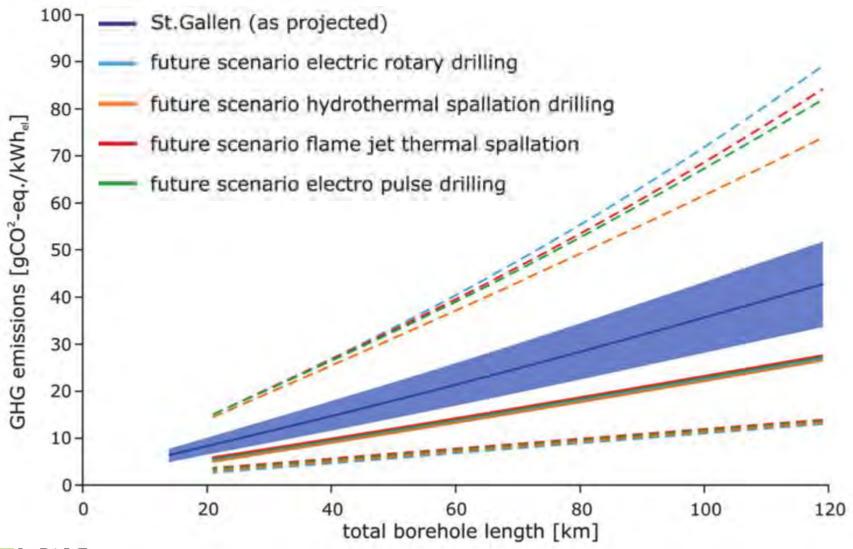






# Impacts as function of total borehole

Review: total borehole length 6-200km

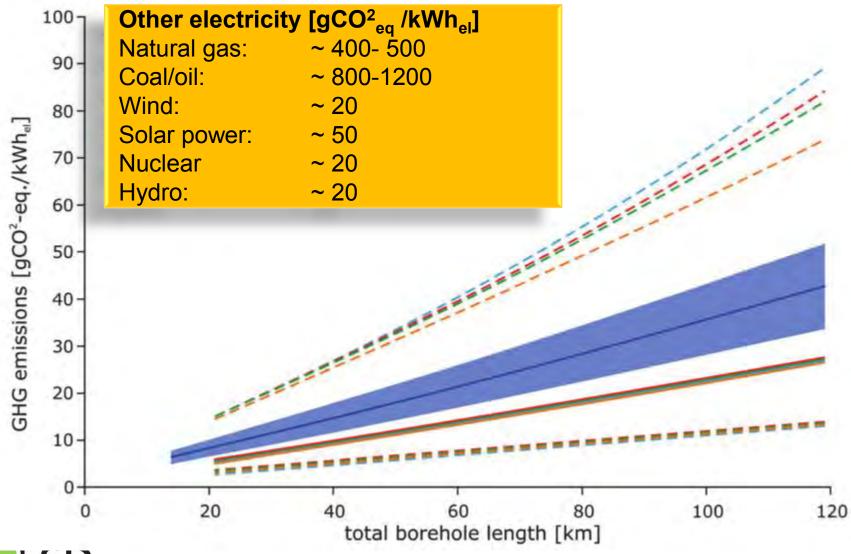



- Soultz-sous-Forets scenario<sup>33</sup>
- St. Gallen (as projected)
- Basel (as projected)

- --- U.S. electricity mix
- ---- Swiss electricity mix






### St.Gallen case





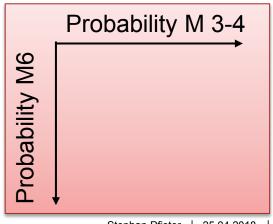


## St.Gallen case








# Seismic risks – missing LCIA

- Occurrence:
  - During drilling and operation phase (and exploration phase)
- Acceptance:
  - Limited as impacts occur locally not in other countries
- Effect
  - Observed earthquakes in Basel and St.Gallen no damage expected
    - In Basel lot of unjustified damages reported (previous events?)
       (Kraft et al. 2009: <a href="http://doi.org/10.1029/2009EO320001">http://doi.org/10.1029/2009EO320001</a>)
    - In St. Gallen no damages reported (mentality?)



### Seismic risks in an LCA context

- Environmental impacts and impacts on man-made environment (damages to infrastructure)
  - Very high uncertainties make modeling difficult
  - Estimate damage in costs (earthquake studies)
- Generally many small and few large seismic events
  - Assume cumulated probabilities (30years)
    - M3-4: 100-1000%
    - M6: 1-2%





### Cost estimates seismic events Basel

- 2 approaches resulted in ~130-140 million CHF impacts over 30 years
- Projected production of ~500 GWh:
  - 0.2 0.3 USD / kWh
- Reasons
  - Relatively low electricity production (3 MW)
  - High population density
  - Conservative estimate





# **Recent study:** Trutnevyte and Azevedo (2018)

- Expert assessments of costs and risks of seismic events >M3 and >M5
- Hypothetical plant rather high flow
  - 5.5 MW net (~1300 GWh/a)
- Total costs (30 years operation):
  - Geomean: 2.3 million USD
  - Arithmetic mean: 31 million USD
- Cost / kWh
  - 0.002 0.02 USD/kWh







### Conclusion

- No scientific reason to abandon EGS exploration in Switzerland
  - Especially in light of Paris Agreement
  - Baseline when no sun

1815: **Tambora Eruption** 





### Conclusion

- No scientific reason to abandon EGS exploration in Switzerland
  - Especially in light of Paris Agreement
  - Baseline when no sun
- Political issue ("Not In My Back Yard")
  - "Swissness"
    - clean local production, outsourced dirty supply chains
    - Federal, democratic system hinders developments
- More research needed





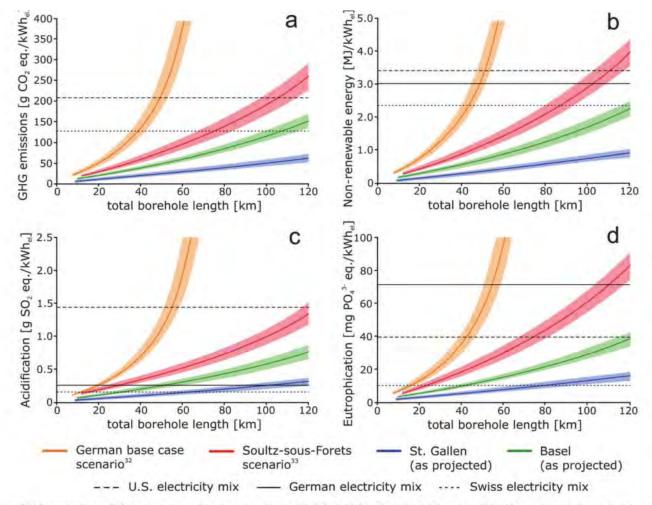
# Thank you for your attention!

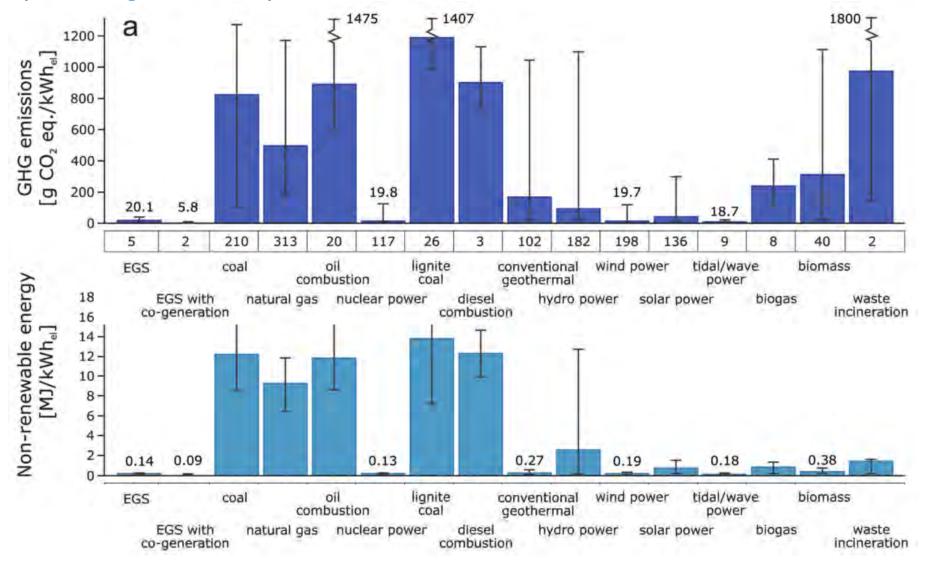
pfister@ifu.baug.ethz.ch



# Impacts as function of total borehole

(Menberg et al 2016)





Fig. 4 (a) Life time GHG emissions, (b) non-renewable energy demand, (c) acidification and (d) eutrophication potential per produced kW h electricity for four EGS plants as a function of overall borehole depth (number of wells multiplied by the well depth). The German base case is identical to scenario A1 in Frick et al. and Soultz-sous-Forêts is identical to scenario case 6 in Lacirignola and Blanc. Data for the emissions caused electricity mixes are taken from Ecoinvent 2.2. The band accounts for the standard deviation of LCI uncertainty.





## Comparison with other power

(Menberg et al 2016)







# **Caclulations impacts**

#### Trutnevyte and Azevedo (2018):

#### Annual probability stimulation

- **M≥3** -> P 0.2%–95% during reservoir -> ~50% avg (geomean 5%)
- $M \ge 5$  event span from 0.002%–2% -> ~ 1% avg (geomean 0.06%)

#### Annual probability operation

- M≥3 -> P 0.2%-100% during operation. -> ~50% avg (geomean 5%)
- $M \ge 5$  event span from 0.003%-3% -> ~ 1.5% avg (geomean 0.1%)

#### Costs

- M3 cost 0.5 mio / event
- M5 cost 50 mio / event + 50 injuries and one fatality or none -> <50 DALYS

#### **Stimulation** geomean:

= 5%\* 0.5 mio = 0.03 mio+ 0.06%\*50mio = 0.03 mio

#### arithmean

=50%\* 0.5 mio = 0.25 mio+1% \* 50 mio= 0.5 mio

#### **Operation** geomean

= 30\*5%\*0.5 mio = 0.75 mio+ 30\* 0.1 %\*50mio = 1.5 mio

#### Arithmean

= 30\* 50%\* 0.5 mio = 7.5 mio+ 30\* 1.5 %\*50mio = 22.5 mio





# Paper on expert judgements comes to a similar conclusion Trutnevyte and Azevedo (2018) DOI 10.1088/1748-9326/aa9eb2

"expert best-quess estimates of annualized exceedance probabilities of an M≥3 event range from 0.2%–95% during reservoir stimulation and 0.2%–100% during operation. Bestguess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance."





### Seismic risks in an LCA context

- Environmental impacts and impacts on man-made environment (damages to infrastructure)
  - Using data form Geology, there seems no to very low real impacts
  - Very high uncertainties make modeling difficult
  - Even with higher estimation impacts very low compared to other power production options
- Risks can be modeled and contain uncertainty as failure of dams in hydropower or climate risks (Kraft et al 2009)
  - No need to treat separately





# Patrick Hädener BSc thesis: Umweltbewertung eines Geothermie-kraftwerkes

| ~ Magnitude 3-<br>4 | 1 mal  | 2 mal  | 3 mal  | 4 mal  | 5 mal  | 6 mal  | 7 mal  | 8 mal  | 9 mal  |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                     | 4.44   | 8.88   | 13.33  | 17.77  | 22.22  | 26.66  | 31.11  | 35.55  | 40     |
|                     | Mio.   |
| ~ Magnitude 6       |        |        |        |        |        |        |        |        |        |
| 0.0100              | 91.391 | 95.831 | 100.28 | 104.72 | 109.17 | 113.61 | 118.06 | 122.50 | 126.95 |
|                     | Mio.   | Mio.   | 1 Mio. | 1 Mio. | 1 Mio. | 1 Mio. | 1 Mio. | 1 Mio. | 1 Mio. |
| 0.0111              | 100.95 | 105.39 | 109.84 | 114.28 | 118.73 | 123.17 | 127.62 | 132.06 | 136.51 |
|                     | 6 Mio. | 6Mio.  | 6Mio.  | 6 Mio. | 6 Mio. | 6 Mio. | 6 Mio. | 6 Mio  | 6 Mio. |
| 0.0125              | 113.12 | 117.56 | 122.01 | 126.45 | 130.90 | 135.34 | 139.79 | 144.23 | 148.68 |
|                     | 9 Mio. |
| 0.0143              | 128.78 | 133.22 | 137.67 | 142.11 | 146.56 | 151.00 | 155.45 | 159.89 | 164.34 |
|                     | 1 Mio. |
| 0.0166              | 148.78 | 153.22 | 157.67 | 162.11 | 166.56 | 171.00 | 175.45 | 179.89 | 184.34 |
|                     | 0 Mio. |
| 0.0200              | 178.34 | 182.78 | 175.23 | 191.67 | 196.12 | 200.56 | 205.01 | 209.45 | 213.90 |
|                     | 3 Mio. |

