

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Life Sciences and Facility Management

Institute of Natural Resource Sciences

Highly efficient multi-junction solar cells using silicon heterojunction and perovskite tandem: prospective life cycle environmental impacts

René Itten & Matthias Stucki

Research Group Life Cycle Assessment Institute of Natural Resource Sciences Zurich University of Applied Sciences

68th LCA Discussion Forum on Life Cycle Assessment DF 68 16. April 2018, Alumni Pavillon, ETH Zürich

Sustainability assessment of 3rd generation photovoltaics

Life Sciences and Facility Management

Institute of Natural Resource Sciences / Life Cycle Assessment Research Group

Bush et al. (2017) Institute of Natural Resource Sciences / Life

- Module prototype with different coatings and colours
- Coated with aluminium, copper and plastics .

Institute of Natural Resource Sciences / Life Cycle Assessment Research Group

5 25.04.2018

Summary parameters and scenarios

Life Sciences and Facility Management

Institute of Natural Resource Sciences

Abbreviation	Technology	Efficiency in %		Thickness in micrometer	
			Module	Wafer	Kerf
Mono-Si REF	Mono-crystalline silicon, single-junction	16.5	15.1	295	145
Mono-Si ITRPV	Mono-crystalline silicon, single-junction	26.0	23.8	140	60
Poly-Si REF	Poly-crystalline silicon, single-junction	16.0	14.7	295	145
Poly-Si ITRPV	Poly-crystalline silicon, single-junction	20	18.3	150	60
PSC PESS	Perovskite single-junction	15.0	13.8	n.a.	n.a.
PSC OPT	Perovskite single-junction	20.0	18.3	n.a.	n.a.
M2T-SHJ-PSC PESS	Monolithic two terminal tandem cell using perovskite and silicon heterojunction tandem	26.0	23.8	295	145
M2T-SHJ-PSC OPT	Monolithic two terminal tandem cell using perovskite and silicon beterojunction tandem	30.0	27.5	120	60

• Yield 1027 kWh/kWp, slanted-roof installation in Switzerland, PR: 82%

- Lifetime 30 years, cell-to-module efficiency ratio: 0.915
- Degradation 0.7% per year (avg 10.5% for LT 30 years, eff. yield 919 kWh/kWp
- Identical mounting system, module and cell production

IEA PVPS. (2016)

Institute of Natural Resource Sciences / Life Cycle Assessment Research Group

25.04.2018 6

* Optimistic lifetime of 30 years for PSC layer

Itten & Stucki (2017)

Zurich University

Trade-off in mineral and fossil resource depletion due to use of ITO as TCO

Life Sciences and Facility Management

Institute of Natural Resource Sciences

Greenhouse gas emissions in kg CO₂-eq per kWh electricity 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140

Mono-Si REF, eff: 16.5% Mono-Si ITRPV, eff: 26% Poly-Si REF, eff: 16% Poly-Si ITRPV, eff: 20% *PSC PESS, eff: 15% *PSC OPT, eff: 20% *SHJ-PSC PESS, eff: 26% *SHJ-PSC OPT, eff: 30%

■ Inverter ■ Mounting system ■ Module production ■ Cell production ■ PSC Layer ■ SHJ Layer ■ Wafer ■ Rest

Itten & Stucki (2017)

- * Optimistic lifetime of 30 years for PSC layer
- Yield 1027 kWh/kWp, degradation 0.7% per year, 30 year lifetime for all solar cells
- Identical mounting system, module and cell production
- Additional layers for SHJ and PSC in same order of magnitude
- Silicon wafer most important contribution (if used)

Glass-glass module without frame

Life Sciences and Facility Management

Zurich University of Applied Science

> Institute of Natural Resource Sciences

> > 2

3

2

4

2

5

2

6

7

- 1. Font glass
- 2. Clear interlayer
- 3. Colour filter
- Cell matrix (cells, tabbing ribbons, basbar ribbons)
- 5. Black interlayer
- 6. Back glass
- 7. Junction box, cables and connectors

Current calculations with framed module with aluminium backside, the final encapsulation will be glass-glass without frame

Institute of Natural Resource Sciences / Life Cycle Assessment Section

Cattaneo et al. (2018)

GHG mono-Si vs PSC vs tandem

- Blue lines for mono-Si modules, grey for Poly-Si with fixed lifetime of 30 years
- PSC: Perovskite single-junction, mono-Si: mono-crystalline silicon single-junction
- SHJ-PSC: monolithic tandem perovskite silicon heterojunction

Zurich University of Applied Sciences

Life Sciences and

Facility Management

Institute of

Sensitivity degradation

- Dotted blue and grey lines for mono-Si and poly-Si modules with fixed lifetime of 30 years
- End of Life (EoL) for 10% and 5% annual degradation after 10 and 20 years lifetime

Zurich University of Applied Sciences

> Life Sciences and Facility Management

Surface area requirement and non-

Surface area requirement

Life Sciences and Facility Management

Institute of Natural Resource Sciences

4.00

5.00

Mono-Si REF, eff: 16.5% Mono-Si ITRPV, eff: 26% Poly-Si REF, eff: 16% Poly-Si ITRPV, eff: 20% PSC PESS, eff: 15% PSC OPT, eff: 20% SHJ-PSC PESS, eff: 26% SHJ-PSC OPT, eff: 30%

NREPBT in years

3.00

1	1	

Zurich University of Applied Sciences

2.00

0.00

1.00

Itten & Stucki (2017)

$NREPBT = \frac{1}{2}$	$\frac{NRPE_{PV}}{NRPE_{kWh}*E_{PV}}$ according to IEA-PVPS Methodology Guideline for PV
NREPBT:	Non Renewable Energy Payback Time
NRPE _{PV} :	Non Renewable Primary Energy Demand PV Power Plant
E _{PV} :	Annual Yield of the Solar Power Plant in kWh
NRPE _{kWh} :	Non Renewable Primary Energy Demand per kWh replaced electricity

Conclusions

- Key parameters: module efficiency, lifetime and degradation
- Less than 10% of GHG from additional layers for perovskite and silicon heterojunction
- Trade-off resource depletion: use of indium for ITO
- If the perovskite layer is stabilized, the area demand for photovoltaic electricity reduction can be reduced up to 20%
- Toxicity: use of heavy metals (Pb and Sn)

Life Sciences and Facility Management

Institute of Natural Resource Sciences

Thanks for your attention!

René Itten

Research Group Life Cycle Assessment Institute of Natural Resource Sciences Zurich University of Applied Sciences

ittn@zhaw.ch, +41 58 934 52 32 www.zhaw.ch/iunr/lca

References

- Itten, R., & Stucki, M. (2017). Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts. *Energies*, *10*(7), 841. <u>http://www.mdpi.com/1996-1073/10/7/841</u>
- Bush, K. A., Palmstrom, A. F., Yu, Z. J., Boccard, M., Cheacharoen, R., Mailoa, J. P., McGehee, M. D. (2017). 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. *Nature Energy*, *2*, 17009.
- Cattaneo, G., Perret-Aebi, E., Niesen, B. (2018).
 Module Prototype CSEM, unpublished

Mono-Si production

Polysilicon production

Metallurgical Si production

Zurich University

Harmonised comparison with published results

Life Sciences and Facility Management

Institute of Natural Resource Sciences

Deposition PSC layer

Inverter

Mounting system and module production

Greenhouse gas emissions in kg CO₂-eq per kWh

• X

Life Sciences and Facility Management

Institute of Natural Resource Sciences

Layer	Doping	Thickness	Application	Function
Indium tin oxide		120 nm	Sputtering	Top contact layer
Tin oxide	n	10 nm	Sputtering	Electron transport layer
Methyl ammonium lead iodide	i	500 nm	Thermal evaporation of PbI ₂ followed by slot-die coating of MAI	Absorber layer
Nickel oxide	р	10 nm	Sputtering or atomic layer deposition	Hole transport material
Silver rear contact		150 nm	Sputtering	Back contact layer
Layer D	Ooping	Thickness	Application	Function
Ag front grid			Ag screen printing	Front grid
Indium tin oxide		80 nm	Sputtering	Top contact layer
Nickel oxide	р	10 nm	Sputtering or atomic layer deposition	Hole transport
Perovskite	i	500 nm	Thermal evaporation of PbI ₂ followed by slot-die coating of MAI	Absorber layer
Tin oxide	n	10 nm	Sputtering	Electron transport
n-µ-c-Si	n	10 nm	PECVD	Recombination junction
p-µ-c-Si	р	10 nm	PECVD	Recombination junction
i-a-Si	i	10 nm	PECVD	Passivation
n-Si	n	295 and 120 micron	Base for others layers	Silicon substrate
i-a-Si	i	10 nm	PECVD	Passivation
n-a-Si	n	10 nm	PECVD	Back surface field
Indium tin oxide		100 nm	Sputtering	Back contact layer
Ag rear contact		200 nm	Sputtering	Back electrode

Institute of Natural Resource Sciences / Life Cycle Assessment Research Group

Cell structure

References

Life Sciences and Facility Management

Institute of Natural Resource Sciences

- Baldassarri, C., Shehabi, A., Asdrubali, F., & Masanet, E. (2016). Energy and Emissions Analysis of next Generation Electrochromic Devices. Life Cycle, Environmental, Ecology and Impact Analysis of Solar Technology, 156, 170–181.
- Celik, I., Song, Z., Cimaroli, A. J., Yan, Y., Heben, M. J., & Apul, D. (2016). Life Cycle Assessment (LCA) of Perovskite PV Cells Projected from Lab to Fab. Solar Energy Materials and Solar Cells, (Journal Article).
- Espinosa, N., García-Valverde, R., Urbina, A., & Krebs, F. C. (2011). A Life Cycle Analysis of Polymer Solar Cell Modules Prepared Using Roll-to-Roll Methods under Ambient Conditions. Special Issue : 3rd International Summit on OPV Stability, 95(5), 1293–1302.
- Espinosa, N., & Krebs, F. C. (2014). Life Cycle Analysis of Organic Tandem Solar Cells: When Are They Warranted? Solar Energy Materials and Solar Cells, 120, Part B(0), 692–700.
- Espinosa, N., Serrano-Luján, L., Urbina, A., & Krebs, F. C. (2015). Solution and Vapour Deposited Lead Perovskite Solar Cells: Ecotoxicity from a Life Cycle Assessment Perspective. Solar Energy Materials and Solar Cells, 137(Journal Article), 303–310.
- Gong, J., Darling, S. B., & You, F. (2015). Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts. Energy & Environmental Science, (7), 953.
- Louwen, A., van Sark, W. G. J. H. M., Schropp, R. E. I., Turkenburg, W. C., & Faaij, A. P. C. (2015). Life-Cycle Greenhouse Gas Emissions and Energy Payback Time of Current and Prospective Silicon Heterojunction Solar Cell Designs. Progress in Photovoltaics: Research and Applications, 23(10), 1406– 1428.
- Monteiro Lunardi, M., Wing Yi Ho-Baillie, A., Alvarez-Gaitan, J. P., Moore, S., & Corkish, R. (2017). A Life Cycle Assessment of Perovskite/Silicon Tandem Solar Cells. Progress in Photovoltaics: Research and Applications, n/a-n/a.
- Serrano-Lujan, L., Espinosa, N., Larsen-Olsen, T. T., Abad, J., Urbina, A., & Krebs, F. C. (2015). Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective. Advanced Energy Materials, 5(20), n/a-n/a.
- Trube, J., Metz, A., Fischer, M., Hsu, A., Julsrud, S., Chang, T., & Tjahjono, B. (2017). International Technology Roadmap for Photovoltaic (ITRPV) 2016 Results (8th Edition). Frankfurt am Main: VDMA Photovoltaic Equipment.
- Frischknecht, R., Heath, G., Raugei, M., Sinha, P., de Wild-Scholten, M., Fthenakis, V., Kim, H. C., Alsema, E., & Held, M. (2016). Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, 3rd Edition. IEA PVPS Task 12, International Energy Agency Photovoltaic Power Systems Programme.
 Institute of Natural Resource Sciences / Life Cycle Assessment Section 25.04.2018 19