Dynamic LCA ghgforcing – an open source Python package

Greg Schivley 64th LCA Discussion Forum March 30, 2017

Carnegie Mellon University Civil & Environmental Engineering

Most LCA studies use GWP for climate impacts

Emissions happen over time, might be variable

Biogenic uptake and emissions at different times

Carnegie Mellon University

Cherubini, F., Guest, G. & Strømman, A. Application of probablity distributions to the modelleing of biogenic CO2 fluxes in life cycle assessment. *Global Change Biology* **4**, 784–798 (2012).

1.

Civil & Environmental Engineering

3

Calculation of radiative forcing

$$RF(t) = RE \int_0^t g(t')y(t-t')dt'$$

- Every emission decays according to a response function
- Mass of a species in the atmosphere is calculated using a convolution of the emission and response functions (above)

Carnegie Mellon University Civil & Environmental Engineering

Introducing ghgforcing

- Open-source Python library
 - github.com/gschivley/ghgforcing
 - -pip install ghgforcing
- Calculates RF, CRF, temperature for CO₂ and CH₄

Policy Analys Review

Identifying/C Reduction S Enhancing life cycle impact assessment from climate science: Review :t Metrics atural Gas

<u>Greg Schivley</u>^{*†}, W Annie Levasseur^{a,*}, Otávio Cavalett^b, Jan S. Fuglestvedt^c, Thomas Gasser^{d,e}, Daniel J.A. Johansson^f, Susanne V. Jørgensen^g, Marco Raugei^h, Andy Reisingerⁱ, Greg Schivley^j, Anders Strømman^k, Katsumasa Tanaka¹, Francesco Cherubini^k

Carnegie Mellon University

Civil & Environmental Engineering

ntial

ima, Derrick Carlson,

ghgforcing basic parameters

- Array of emissions
- Array of time (same length as emissions)
- kind of calculation (RF, CRF, or temp)
- Returns: results on annual basis over length of time array

A simple example

1 kg generic emission every year for 50 years

```
end_time = 100
tstep = 0.1
time = np.linspace(start=0, stop=end_time, num=int(end_time/tstep))
emission = np.ones_like(time)
emission[500:] = 0
```

Make CO₂ 50 kg/yr

```
co2_rf = CO2(emission * 50, time, tstep=0.1, kind='RF')
ch4_rf = CH4(emission, time, tstep=0.1, kind='RF')
plt.plot(co2_rf, label='50kg CO2')
plt.plot(ch4_rf, label='1kg CH4')
```


Calculate CRF

```
co2_crf = CO2(emission * 50, time, tstep=0.1, kind='CRF')
ch4_crf = CH4(emission, time, tstep=0.1, kind='CRF')
plt.plot(co2_crf, label='50kg CO2')
plt.plot(ch4_crf, label='1kg CH4')
```


Carnegie Mellon University Civil & Environmental Engineering

Or calculate temperature

Support for irregular timeframes

years = np.array([2000, 2010, 2015, 2020, 2025, 2050])
emissions = np.array([-10, 2, 5, 20, 0, 0])

Other calculation features

- Methane with or without:
 - Climate-carbon feedbacks
 - Decomposition to CO_2

cc-feedbacks	$CH_4 \rightarrow CO_2$ (fossil CH_4)	Equivalent 100-yr GWP
×	×	28
×	\checkmark	30
\checkmark	×	34
\checkmark	\checkmark	36

- Uncertainty
 - Radiative efficiencies
 - Methane indirect effects
 - Methane lifetime
 - Fraction methane to CO_2
 - Climate-carbon feedbacks
 - CO₂ response function
- Return ± 1-sigma, or full monte carlo results

Carnegie Mellon University

Civil & Environmental Engineering

Sample uncertainty

Caution with pulse emissions!

- ghgforcing was designed for <u>continuous</u> emissions
- 1kg at every timestep over a year is interpreted as 1kg for the year
- Default time-step is 0.01 years
- A pulse in the first step will be 1/tstep too small!

>Change tstep or multiply a pulse emission by 1/tstep

easyghg if you don't want to use Python

- Basic excel interface
- Uses ghgforcing
- github.com/gschivley/easyghg
 - Needs to be fixed after recent updates to xlwings
 - Let me know if this is something you'd like to use

•		□ Б Ю Y び Ŧ В easyghg								Q- Search Sheet								
	Home	Insert Page	Layout Formu	ulas	Data Rev	view Viev	v Devel	oper										2
B8	4	$\times \checkmark f_x$																
	A	В	С	D	E	F	G	н	1	J	К	L		M	N	0	Р	
L						Mean Values								Methane option	ns:			
	Year	CO ₂ Emission (kg/yr)	CH ₄ Emission (kg/yr)		CO2 forcing	CH4 forcing	Total Forcing							Fossil	True			
8	0	1	1		(0 2.1071E-15	2.107E-15			Calculate	forcing			cc-fb	True	1		
4	1	1	1		(0 2.0447E-13	2.045E-13				_							-
5	2	1	1		(0 3.9125E-13	3.912E-13							MC options:				
6	3	1	1		(0 5.6378E-13	5.638E-13							runs	1000			
7	4	1	1		(0 7.2326E-13	7.233E-13							random state	5			-
в	5		1		(0 8.7078E-13	8.708E-13							full output	True	Full output	will write the	resul
9	6		1		(0 1.0073E-12	1.007E-12											
0	7	,	1			0 1.1339E-12	1.134E-12					_		Other options:				-
1		2	1		(0 1.2512E-12	1.251E-12							Pulse emissions	False	Select "True	" for more a	ccurat
2	9		1			0 1.36E-12	1.36E-12							RE or CRE	RF	beleet frac	lor more de	Ceard
3	10		1		(1.461E-12	1.461E-12											-
4	11		1			1 5549F-12	1 5555-12											
5	12		1			1 6423E-12	1 642E-12					· · ·		F				
6	12		1			1 7225E-12	1 7245-12						меа	n Forcing				
7	14		1			1.7233E-12	1 7995-12		2.5	1e-12		with 1	l-sig	ma uncerta	inty			
0	14		1			1.7555E-12	1.7550-12											
0	10		1			1.0059E-12	1.076-12											
9	10		1			1.9336E-12	1.9502-12											
0	1/		1			J 1.9974E-12	1.997E-12		20									
1	10		1			2.0349E-12	2.0556-12		2.0									
2	19		1			J 2.1088E-12	2.109E-12											
3	20	·	1		(0 2.1593E-12	2.159E-12											
4	21				(0 2.103E-12	2.103E-12		15									
5	22				(0 1.9529E-12	1.953E-12		1.0									
6	23				(0 1.8151E-12	1.815E-12		1 e9									_
7	24				(0 1.6885E-12	1.688E-12		"									_
8	25	i			(0 1.5721E-12	1.572E-12		2									
9	26	i			(0 1.465E-12	1.465E-12		1.0									
0	27	<u> </u>			(0 1.3665E-12	1.367E-12											
1	28				(0 1.2759E-12	1.276E-12			/								
2	29				(0 1.1924E-12	1.192E-12			/								
3	30				(0 1.1155E-12	1.116E-12		0.5	1								
4	31				(0 1.0447E-12	1.045E-12			1								
5	32	1			(9.7942E-13	9.794E-13			/								
6	33				(0 9.1923E-13	9.192E-13			1								
17	34	l I			(0 8.6371E-13	8.637E-13		0.0		-							
8	35	i			(0 8.1248E-13	8.125E-13		0	1	20	4	υ.	60		80	100 -	
9	36	i			(0 7.6521E-13	7.652E-13							rears				
10	37	1			(0 7.2157E-13	7.216E-13											
11	20					6 91365 13	6 9125 12											

Thanks

- Contact
 - Email: gs1@cmu
 - Twitter: @gschivley
- Contribute to development or log an issue
 - github.com/gschivley/ghgforcing
 - github.com/gschivley/easyghg

