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1) THEMIS LCA model framework
2) Vintage capital modelling approach for global-scale LCA
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2 @ NTNU



THEMIS

Integrated hybrid LCA mode
framework

Described by Gibon et al.
(2015)

Used in report by UNEP
International Resource Pane
(Hertwich et al. 2016)

 Mainstream databases
(Ecoinvent, EXIOBASE) with
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Decarbonization of electricity generation can support climate-  questions. LCAs typically address a single technology at  time.
change mitigation and presents an opportunity to address polu-  Comparative studies often focus on a single issue, such
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ABSTRACT: Climate change mitigation demands lage-scale
technologicl change on a global level and, i successfully
implemented, will significantly affect how products and
services are produced and consumed. In order to anticipate
the life cycle environmental impacts of products under climate
mitigation scenarios, we present the modeling framework of an
integrated hybrid life cycle assessment model covering nine
world regions. Life cycle assessment databases and multire-
gional input—output tables are adapted wsing forecasted
Cchanges in technology and resomces up to 2050 under a
2 °C scenario. We call the result of this modeling “technology
hybridized environmental-economic model with integrated
scenarios” (THEMIS). As a case stmdy, we apply THEMIS in
an integrated environmental assessment of concentrating solar power. Lifecycle greenhouse gas emissions for this plant ra
from 33 to 95 g CO, eq./kWh across different world regions in 2010, falling to 3087 g CO, eq./kWh in 2050, Using regic
life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cyde framewc

that capture the actual consequences and feedback effects of large-scale policies in the long term.

1. INTRODUCTION

A 2 °C global average temperature increase is considered the
threshold above which global warming consequences on human
health, ecosystems, and resources might be disastrous. Path-
ways incorporating a combination of a shift toward low—carbon
energy logies, efficiency imp . and a decrease in
final consumption present various ways to reduce greenhouse
g emissions as means to reach climate targets, In effect,
climate change mitigation demands large-scale technology
lchanee on a slobal level and # successful will sienificanth

generation through transportation to cement production
therefore essential to assess these modifications based
model that contains dl life cycle phases of both existin
emerging technologies.

Extending LCA to future scenarios is an arguably of
way to understand the impliations of long-term changes
as those planned in climate change mitigation roadmaps
review of LCA methodology, Guinée et al.' argue: "k m
more realistic [than microscopic consequential product 1
to start thinking how more realistic, macroscapic scenari
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THEMIS technology change and
variation

* Electricity mix employed depends on region, scenario
and year

* Electricity supply technologies

— Variations in key parameters (e.g., efficiency, load factors,
emission factors)

— Successive technology generations (e.g., poly-Si = thin-film PV)

 For selected materials production

— Aluminium, copper, nickel, iron and steel, metallurgical grade
silicon, flat glass, zinc and clinker Gibon et al. 2015; Hertwich et al. 2016
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Vintage capital modelling approach@;

« To address impacts of future scenarios on large scales

— Capture timing of activities: attributing construction, operation
and end-of-life activities to appropriate years

— Analyse activities with technology data pertaining to appropriate
years

— Capture basic transition dynamics (if present)

« Key elements of approach
— Tracking of capacity additions and operating capacity
— Consider distribution of emissions by life cycle stages
— Consider replacement at end-of-life
and Hertwich 2011; Hertwich et al.

— From THEMIS: life Cyde inventories as%\f@%cfs)ergén fﬁl uﬁder review
: @NTNU




Matrix-based computation
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Hertwich et al. (2015)

100
0

-100

-200

-300

2010 2030

Ecotoxicity [Mt 1,4DB eq./yr]

0%

-100%

-200%

Eutrophication [Mt P eq./yr]

100%

0%

-100%

-200%

2050

Natural gas with CCS

Natural gas without CCS

Coal with CCS

Coal without CCS

Wind power

Hydropower

Concentrating solar power

Photovoltaics

= mm mm Netchange




Net impacts of mitigation instead of
baseline (mitigation - baseline) for global
electricity supply
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Introducing LCA in energy-econom

models
« Collaboration under ADVANCE EU project

— Potsdam Institute for Climate Impact Research, operating the
model REMIND

— Norwegian University of Science and Technology, operating

GHG Emission Pathways 2000-2100: All ARS Scenarios
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Preliminary results

LCA energy data for use in energy-
economy models
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Arvesen et al. (under review)
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Matrix-based computation
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« Energy accounting approach of Arvesen and Hertwich (2015)
« Material accounting approach of Singh et al. (2015)  Arvesen et al. (under review)
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Global scenario results for 2050 from
REMIND

Content removed from presentation slides distributed online

Pehl et al. (under review)
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Impact on optimal technology choice

Content removed from presentation slides distributed online

Pehl et al. (under review)
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