

Recycling contaminants: chemicals in the paper product cycle

David Laner¹, Kostyantyn Pivnenko², Thomas F. Astrup²

¹Institute for Water Quality, Resources and Waste Management, TU Wien, Karlsplatz 13, 1040 Wien, Austria ²Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Discussion forum on Life Cycle Assessment

November 30th 2016, ETH Zürich

Clean cycles... safe final sinks

 Paper has a high share of secondary production

Paper is not composed of fibers only

Source: http://thefiberwire.com

Bisphenol A (BPA)

Mainly used in thermal paper (color developer) and also for glueing

Source: Liao & Kannan (2011), doi: 10.1021/es202507f

- Diethylhexyl phthalate (DEHP)
 - Used as plasticizers in lacquers, dispersion glues, and printing inks

- Mineral oil hydrocarbons (MOHs)
 - Mainly used in offset printing (solvents)
 - Contamination of foodstuff reported

Source: Foodwatch (2015)

• Goals:

- Evaluate the flows of chemicals (BPA, DEHP, MOHs) in circular product systems (given limited data availability) using the example of paper
- Develop and assess strategies for reducing contamination of paper products with these chemicals

Approach

- European paper flow budget for the year 2012
- Determine the amount of chemicals used in paper products
- Dynamic model of the paper cycle
- Analyse scenarios for reducing chemicals contamination of paper products

1. Balancing paper flows in Europe (2012)

Pivnenko et al. (2016), doi: 10.1021/acs.est.6b01791.

2. Determining chemicals flows

Pivnenko et al. (2016), doi: 10.1021/acs.est.6b01791.

3. Dynamic model of goods & substance cycles

Paper flows in Europe (2012)

Source: Pivnenko et al. (2016), doi: 10.1021/acs.est.6b01791.

Chemicals flows in Europe (2012)

Dynamic model: Reference scenario

Based on: Pivnenko et al. (2016), doi: 10.1021/acs.est.6b01791.

13/18

Pivnenko et al. (2016), doi: 10.1021/acs.est.6b01791.

- Chemicals cycles in paper products
 - Didactical case study (assumptions & uncertainties)
 - Monitoring of contaminants in material cycles
 - Measures for reducing paper product contamination
 - Phase out is most effective (however, 13-31 years to fall below LOD)
 - **Collection** (at current collection rates) **close to optimum** (low to moderate optimization potential)
 - 5% lower collection rate increases the potential for reducing chemicals content in virgin paper products by optimized collection

→ Trade-off between QUALITY and QUANTITY if waste paper share is (further) increased in paper production

Explore the trade off... using LCA

Resource recovery needs to be optimised

- quality of the secondary raw material
- directing pollutants to appropriate sinks
- substituted products

Based on: Laner & Rechberger (2007), ttp://dx.doi.org/10.1016/i.resconrec.2007.03.004

- Impact assessment of products as sinks
 - Link the modelling of substance flows in circular material flow systems to exposure, effect and consequent damage
 - i.e. does increased recycling mean increased risk?

Thank you for your attention!

Reference:

Kostyantyn Pivnenko, David Laner, Thomas F. Astrup (2016): Material cycles and chemicals: Dynamic material flow analysis of contaminants in paper recycling. Environmental Science and Technology, DOI: 10.1021/acs.est.6b01791.

Contact:

Dr. David Laner

Senior researcher

Phone: +43-1-58801-22644

E-mail: david.laner@tuwien.ac.at

http://www.irmar.dk/