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» Help decision making during the design process .

 From individual houses to multifunctional
neighboorhoods

* New construction or retrofitting
« Early-design phase



Urban projects specificities

The project is usually unique, not a mass production such
as industrial products
« Surrondings could be very important (access to sun, wind,

climate, transport network, etc.) : difficulty to generalize
design rules.

Importance of energy parameters in the environmental
assessment : energy consumption, possibly energy
production.

Long to very long life time

Small scale project (very small compared to national
economy)

When evaluating district or urban projects : may be not
negligible compared to local or regional economy
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A CLCA approach for urban project ecodesign 4~
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* The consequential « philosophy » is adapted to project NIND

ecodesign :
« Addition of a new building/district

 Retrofit action on existing building/district (e.g. reducing energy
consumption, addition of materials)

=> Marginal modification of the building stock/ energy
consumption/ local urban environment

« CLCA-P approach principles:

— Pragmatism : what information is relevant and could influence
the design decisions? (e.g. production contraints)

— Reward good practice regarding the context (e.g. use of
recycled material vs design for dismantling)

— Integrating local constraints when possible
— Small scale project : Exclude complex macroeconomic effects



A CLCA approach for urban project ecodesign 4~
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Hypothesis Attributional CLCA-Project
Material and processes Average technologies Marginal Technologies
Biogenic carbon Neutral balance LC phase differentiated
Waste mining Market constraints :
Use of recycled materials
100 % 0 or 100 %
Cut-off Market constraints :
End of life recycling
0% 0 or 100 %

Avoided impacts,
Avoided impacts/ Joint
Allocation, partitioning substitution of the marginal
production
tech.

System model for
Allocation at the Point Of
background processes cut-off
Substitution (APOS)

(refers to ecoinvent v3)




Example 1: Construction materials

Database choice and
analyst interpretation

4 Carbon footprint of Steel (kg)

Effet de serre (kgCO2eq.kg™?)

CutOff APOS Conseq

“ Primary Steel, low-allied
Secondary steel, low-allied
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Example 2: Electricity
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* Include temporal variation of electricity production (Herfray 2011, Roux A"

2016)

« Several marginal approaches possible (long/short term, static vs dynamic)
« What kind of prospective scenarios?

waste

odor

Rad.W

m \ix Marg. « méthode

dérivée »

2 % Charbon > CCG

w5 % Charbon > CCG

w5 % Charbon < CCG

w10 % Charbon > CCG

Comparison of environmental impacts using various

marginal approaches

kwh)
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Effet de serre (gCO2eq
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et

Présent Moyen Long terme
terme

1 b) Mix marginal GHG-P

M Scénario A
Scénario B

Présent Moyen termelong terme

Carbon footprint of prospective electricity mixes, average of
marginal electricity mixes and range of variation over a yeatr.
SA: business as usual scenario

SB: Carbon tax scenario




Example 2: Electricity : Short-term marginal

approaches

« Static (~ GHG methodology) vs simulation model (with and without project)

« What merit order? gas vs coal price

» For static method : margin level (2/5/10 %)

Comparison of environmental impacts using various short-term marginal

odor

Rad.W

s Vi Marg. « methode

dérivée »

2 % Charbon > CCG

5 % Charbon > CCG

s 5 % Charbon < CCG

w10 % Charbon > CCG
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Example 2: Electricity : Marginal prospective 4/
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the future. MARKAL model.
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Evolution of marginal mix : What is marginal production in a given year ffi""™*

(not included: influence on facilities investment, work in progress,

discussion on whether to include it in the specific context of urban project)
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Effet de serre (gCO2eq.kWh?)

200
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400 -

a) Mix moyen

R

Présent 2030 2050

b) Mix marginal GHG-P

W Scénario A
I Scénario B

Présent 2030 2050

Carbon footprint of prospective electricity mixes, average of marginal electricity mixes and range
of variation over a year. SA: business as usual scenario. SB: Carbon tax scenario
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Example 3: Domestic waste and district

heating
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* Integrated assessment of domestic waste and district heating network

iIncluding incineration facilities

Environmental consequences of new dwellings
connection to district heating burning waste as a
baseload energy and using natural gas as
complement.

S1: gas is the marginal energy all year long,
S2: energy overproduction in summer, gas marginal in
winter only
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Effet de serre (kgCO2eq.m-2)
)

Chaudiere
Reseau

Chaudiere
Reseau

Scenario 1 : Gaz|Scénario 2 : Gaz
100 % marginal | marginal hiver

M Chauffage + ECS
Valorisation déchets

& Bilan
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Example 4: Daily transport £
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Use of local transports simulation model to evaluate additional traffic conditionsAeuees

to urban development.

ALCA/CLCA : Buildings design can affect both energy use (buildings operation) and
daily transport

CLCA : Depending on the scale, exclusion or inclusion of public transport
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Conclusions 2z
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* What is important? : ARMINES

* Providing more relevant and accurate information to decision makers — the
decision maker here is implicated in the project design, not in a national policy
strategy development.

* What could be done for urban projects:

« Determine marginal technologies (even if it could be technically complicated for
energy systems/electricity)

 Integrate local constraints and availability of ressources
* Integrate prospective scenarios (national/regional?)

* (When possible) Using specific tools to evaluate local marginal consequences
at the district/City scale (transport, waste, energy network, land use, etc.)

« What cannot be done for urban projects:

« Using national-wide market effects such as elasticities or experience curves or
rebound effects in a systematic way (other than sensitivity or risk analysis)
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Contact :
Charlotte.roux@mines-paristech.fr
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