

Capturing the benefits of responsible forestry practices in LCA: focus on biodiversity

Summary for 61st LCA Discussion Forum March 15, 2016, ETH Zürich

Vincent Rossi

Main contact

LC senior analyst, Quantis Europe vincent.rossi@quantis-intl.com, +41 78 638 63 21

Sebastien Humbert

LCA expert, Quantis Europe sebastien.humbert@quantis-intl.com, +41 79 754 75 66

As well as: Timo Lehesvirta, Urs Schenker, Sokhna Gueye, Robert Taylor, Oona Koski and Pascal Oliveira

Agenda

Biodiversity accounting from different forestry practices is not satisfactory in LCA

Occupation, forest
Occupation, forest, intensive
Occupation, forest, intensive, normal
Occupation, forest, intensive, short-cycle

Potentially Disappeared Fraction; methods: Eco-indicator 99 and IMPACT 2002+

Need to quantify the difference between conventional and responsible forestry practices

Tree level ~ 5 m

Country level ~ 200 km

Landscape level ~ 10 km

Stand level ~ 200 m

Calculation of a biodiversity score based on company's biodiversity state indicators

Forestry practices

- •Retention trees in clear-cut areas
- •Controlled fire in small areas
- Identification and protection of valuable habitats
- •Felling type mimicking natural patterns
- Soil preparation (scarification) to promote seed germination
- •Buffer zones from water bodies
- •Leaving deadwood on floor in harvested areas
- •Stump lifting management

Biodiversity state indicators

- 1. Native tree composition
- 2. Deadwood volume and quality
- 3. Protected valuable habitats
- 4. Forest structure (age classes)

Biodiversity score
Between 0 and 1

•...

Simple relation between biodiversity score and Natural Degradation Potential

Agenda

Occupation impacts dominate all other by diversity impacts

Impact on ecosphere / Ecosystems quality in PDF·m2·y per m3 wood

Responsible forestry practices tedescoloriodiversity impacts

Impact on ecosphere / Ecosystems quality in PDF·m2·y per m3 wood

Biodiversity state indicator	1990		2014		2050	
Native tree species composition	All native trees are present, and only native trees, in the natural species distribution. The umbrella is fully present. Rarest native trees are protected.	0.1	All native trees are present, and only native trees, in an almost natural species distribution (the proportion of broadleaves is a bit too small). The umbrella is fully present. Rarest native trees are protected.	0.2	All native trees are present, and only native trees, in a species distribution that is too weak for broadleaves. The umbrella is almost fully present. Rarest native trees are protected.	0.25
Deadwood volume and quality	About 90% of the stems are harvested and the naturally occurring deadwood is almost always removed. Stumps are not removed. Classes I to V are present only as relics.	0.9	About 90% of the stems are harvested but 100% of the naturally occurring deadwood and most stumps are left on floor. Classes III to V are present only as relics.	0.8	About 90% of the stems are harvested but 100% of the naturally occurring deadwood and half the stumps are left on floor. Classes I to IV are present in significant quantities and class V quantity is increasing.	0.76
Protected valuable habitats	About half of the estimated valuable habitats are identified and protected; 75% of the native species depending on valuable habitats are under protection.	0.7	About 67% of the estimated valuable habitats are identified and protected; all the native species depending on valuable habitats are under protection.	0.32	An estimated 80% of the valuable habitats are identified and protected; all the native species depending on valuable habitats are under protection.	0.2
Forest structure	The structure mimics the natural age variations at a level of 50%, full time is given to various species to colonize and live in each age class. Edges are sharp (without gradual transition).	0.4	The structure mimics the natural age variations at a level of 80%, full time is given to various species to colonize and live in each age class. Edges are sharp (without gradual transition).	0.3	The structure mimics the natural age variations at a level of 90%, full time is given to various species to colonize and live in each age class. Edges are sharp (without gradual transition).	0.2

		Lowest possible score	Case study			
			Year 1990	Year 2014	Year 2050	
Partial biodiversity scores	Native tree species composition	0.3	0.99	0.97	0.96	
	Deadwood volume and quality	0.75	0.82	0.85	0.86	
	Protected valuable habitats	0.67	0.86	0.96	0.98	
	Forest structure	0.8	0.92	0.94	0.96	
	ВР	0.12	0.64	0.75	0.78	
	NDP	0.88	0.36	0.25	0.22	
	PDF	0.88	0.36	0.25	0.22	
	Occupation damage factor PDF×m2×a/(m²×a)	0.88	0.36	0.25	0.22	
	Wood yield m³/(ha×a)		4.2	4.9	4.8	
Damage score PDF×m²×a/m³ wood			847	510	458	

The advantages of responsible forestry practices can now be *quantified* and *used* in LCAs with a practical method

Occupation, forest, responsible case A _______ 0.15 PDF

Occupation, forest, conventional case C ————— 0.27 PDF

Peer-reviewed study
Article submitted

- Scope limited to semi-natural forestry
- Adapted for plantations, but needs refinement
- •Does <u>not</u> allow comparison <u>between</u> biomes (yet)

Agenda

Feel free to contact us would you need to know more

Vincent Rossi
Quantis
vincent.rossi@quantis-intl.com
+41 78 638 63 21

Sebastien Humbert
Quantis
sebastien.humbert@quantis-intl.com
+41 79 754 75 66

Urs Schenker Nestlé Research Center urswalter.schenker@rdls.nestle.com +41 21 785 95 12

Capturing the benefits of responsible forestry practices in LCA: focus on biodiversity

Supplementary information

Vincent Rossi

Main contact

LC senior analyst, Quantis Europe vincent.rossi@quantis-intl.com, +41 78 638 63 21

Sebastien Humbert

LCA expert, Quantis Europe sebastien.humbert@quantis-intl.com, +41 79 754 75 66

As well as: Timo Lehesvirta, Urs Schenker, Sokhna Gueye, Robert Taylor, Oona Koski and Pascal Oliveira

1) Native tree species composition

Native trees carry their biodiversity umbrella (life habitat at each stratum)

Adapted to local conditions, local trophic chain Rare trees are protected and promoted

2) Deadwood volume and quality

Naturally occurring dead trees are left on ground

All classes, from newest (hard) to oldest (soft and colonized), are present

3) Protected valuable habitats

All valuable habitats are identified, inventoried

and protected

100% of the identified native species are protected

4) Forest structure

How to design felling practices to promote biodiversity? Mimic pattern/structure from natural events

Typical scale: 3 km x 2 km (landscape level)

In practice – example in Finland

In practice – example in Finland

Main references

- Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Life Cycle Impact assessment of land use based on the hemeroby concept. Int J Life Cycle Assess 7:339–348. doi: 10.1007/BF02978681
- Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying Land Use Impacts on Biodiversity: Combining Species-Area Models and Vulnerability Indicators. Environ Sci Technol 49:9987–9995. doi: 10.1021/acs.est.5b02507
- De Baan L, Alkemade R, Koellner T (2012) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18:1216–1230. doi: 10.1007/s11367-012-0412-0
- Fehrenbach H, Grahl B, Giegrich J, Busch M (2015) Hemeroby as an impact category indicator for the integration of land use into life cycle (impact) assessment. Int J Life Cycle Assess. doi: 10.1007/s11367-015-0955-y
- Ferrari C, Pezzi G, Diani L, Corazza M (2008) Evaluating landscape quality with vegetation naturalness maps: an index and some inferences. Appl Veg Sci 11:243–250. doi: 10.3170/2008-7-18400
- Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64. doi: 10.1111/j.1755-263X.2008.00011.x
- Lindner JP, Niblick B, Eberle U, et al (2014) Proposal of a unified biodiversity impact assessment method. 9th Int. Conf. LCA Food
- Michelsen O (2008) Assessment of Land Use Impact on Biodiversity Proposal of a new methodology exemplified with forestry operations in Norway. Int J Life Cycle Assess 13:22–31. doi: 10.1065/lca2007.04.316
- Rüdisser J, Tasser E, Tappeiner U (2012) Distance to nature—A new biodiversity relevant environmental indicator set at the landscape level. Ecol Indic 15:208–216. doi: 10.1016/j.ecolind.2011.09.027
- Weidema BP (2008a) Criteria for good biodiversity indicators for forest management in the context of product life cycle assessment. Hørsholm, Denmark
- Weidema BP (2008b) Framework for and review of biodiversity indicators for forest management in the context of product life cycle assessment. Hørsholm, Denmark