

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique

Land use impacts on biodiversity loss in LCA: A bottom-up approach including agricultural intensities and landscape structural diversity

Matthias Meier, Thomas Drapela, Franziska Siegrist, Adele Ferrari, Lukas Pfiffner, Matthias Stolze

Zurich, March - 15 - 2016

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

This project is supported by the **Coop Sustainability Fund**.

Federal Office for the Environment (FOEN), Switzerland

Land use impact assessment of different agricultural management practices

Assessment of land use impacts on biodiversity in LCA due to different agricultural management practices is still difficult:

- Assessment often restricted to land use types;
- > Relatively low resolution regarding land use intensity;
- Some discrete CFs available for some land use types, e.g. intensive/extensive or organic/conventional arable cropping and pastures (e.g. Mueller et al. (2014), de Schryver et al. (2010), Koellner & Scholz (2008))
 - → Of limited use because of wide variation of intensive/extensive or organic/conventional agriculture;
 - → Only limited support for decision-making on land management practices.

Land use impact assessment of different agricultural management practices


- Current approaches oversimplify the real dynamics and complexity of the interactions of species among each other and with their habitats:
 - What are the cause-effect relationships between agricultural land use intensity and impacts on biodiversity?
 - What factors influence farm land biodiversity on different spatial scales apart from the presence of (semi-)natural habitats?
- \rightarrow Objective:

Development of a life cycle impact assessment method for agricultural land use that is able to differentiate production intensities.

Empiric dataset from the GREENVEINS project: Basis for model building

- Pan-European study investigating the relationships between several biodiversity aspects on landscape scale and land use intensity and landscape structure (Billeter et al., 2008).
- Data collection within 25 landscapes (4 x 4 km) in seven European countries.
- 7 species groups studied:
 - vascular plants,
 - birds,
 - wild bees,
 - carabids,
 - hover flies,
 - true bugs,
 - and spiders.

Empiric dataset from the GREENVEINS project: Basis for model building

For farmland biodiversity the GREENVEINS project showed:

- Species richness on landscape level (16 km²) of different species groups are a function of:
 - 1. Land use intensity, and
 - 2. Landscape structure.
- → Regression equations can be used to derive land use impact assessment models differentiating agricultural land use intensities.

Cause-effect relationships adopted from the GREENVEINS dataset for model building

Species group	Land use intensity parameter	Landscape structure parameter
Vascular plants	LUI (normalized parameter including N-input, number of pesticide applications, livestock density)	Percentage of semi-natural habitats within landscape
Arthropods (including wild bees, hover flies, carabids, spiders)	Crop diversity in a landscape	Percentage of semi-natural habitats within landscape
Birds	N-input	Percentage of semi-natural habitats within landscape

Basic model – estimation of species depletion potential on landscape scale

 $S_{plants} = \alpha \times LUI + \beta \times \% SNH + i$

- S_{plants} = Vascular plant species richness on landscape scale
- LUI = Land use intensity index
- %SNH = Share of semi-natural habitats within landscape
- α , β = Slopes
- i = Intercept

$$BDP_{plants} = \frac{(S_{plants_{max}} - S_{plants_i})}{(S_{plants_{max}} - S_{plants_{min}})} \times \frac{F_{LS}}{F_x} \times \frac{LUI_{F_x}}{LUI_{LS}}$$

 BDP_{plants} = Species depletion potential for vascular plants in a landscape due to land use intensity LUI_{F_x} on area F_x

→ Allocation of species loss on landscape level to a specific area according the relative share of this area and the intensity in the landscape.

Basic model – estimation of species depletion potential on landscape scale

 \rightarrow Analogous formulas for BDP of arthropods and birds!

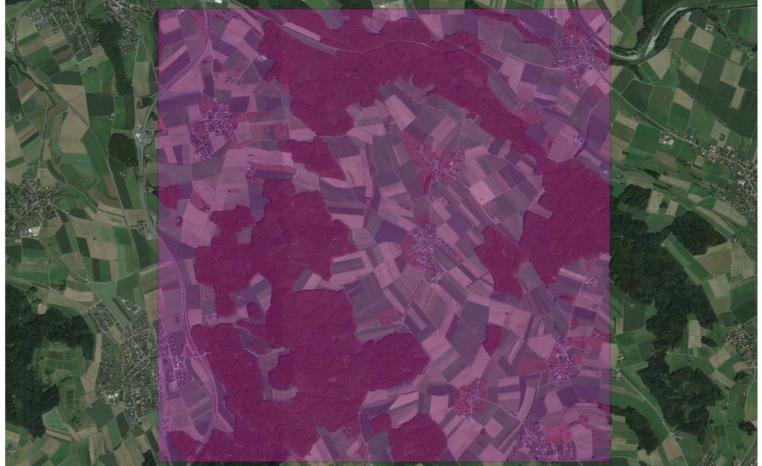
Total species loss potential as average of all groups:

$$BDP_{tot} = \frac{(BDP_{plants} + BDP_{arthropods} + BDP_{birds})}{3}$$

Value range = $\{0 \dots 1\}$

Model input parameters

Landscape structure:				
Parameter	Data source			
Share of semi-natural habitats (%SNH)	Digitized Google satellite images			
	processed in GIS			
Land use intensity:				
Parameter	Data source			
Land use intensity on landscape level:	Derived from the average crop rotation			
Average N- and pesticide input,	in a region, fertilization			
average livestock density and average	recommendations, and agricultural			
crop diversity within a landscape (all	statistics			
scaled to the UAA)				
Land use intensity of a specific area	LCA inventory of a specific area (1 m ² ;			
within a landscape:	1 ha) of crop/grassland under study.			
N- and pesticide input, and livestock				
density (in case of grassland)				

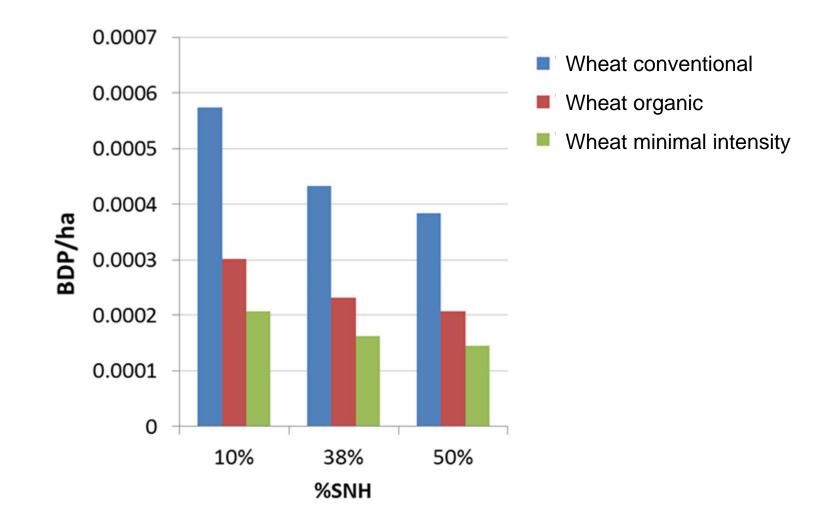

Model characteristics

- The BDP expresses the relative contribution of an agricultural used area within a landscape to the overall species loss on landscape level due to agricultural land use.
- The model delivers continuous CFs for specific land use intensities and specific levels of land scape structure.
- By including landscape structure elements the local biodiversity quality is taken into account.
- Regression equations are valid for the biome "Temperate Broadleaf and Mixed Forests" → ways of adopting CFs for other biomes have been elaborated
- Aggregation of landscapes to global level would allow for global biodiversity assessment.

16 km² landscape square in the canton of Zurich

 \rightarrow share of semi-natural habitats: 38% of total landscape area.

Ration component	Conventional milk production	Organic milk production
	kg/a	kg/a
Soybean extraction meal	250	
Soybean meal	-	235
Concentrate	510	280
Grass from pasture	3'550*	3'550*
Неу	-	1'140*
Grass silage	990*	990*
Maize silage	990*	990*
Straw	1'200*	1'200*
*dry matter	8'000 kg annual milk performance	7'000 kg annual milk performance


	organic	conventional
Required area per cow and year [ha/Kuh*a-1]	1.07	0.81
Annual ration total mass [kg DM]	8'326	7'351
BDP per required area and year	4.73E-04	4.17E-04
BDP per total mass of annual ration	3.94E-04	3.20E-04
BDP per kg milk	6.73E-08	4.80E-08
BDP per kg annual ration	4.74E-08	4.35E-08
BDP per ha of required area and year	4.43E-04	5.18E-04

Effect of agricultural intensity in different landscapes

Interpretation

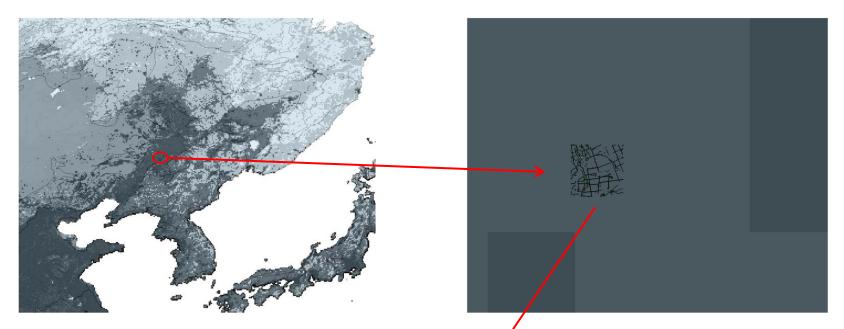
Trade-off between production and biodiversity conservation:

Biodiversity and agricultural productivity compete for land in a double sense!

Within a landscape:

Intensive agriculture / high productivity and high species diversity are possible in heterogeneous landscapes → enough area needed for semi-natural habitats.

Among agriculturally used landscapes:


In low structured landscapes extensive agriculture mitigates impacts on species diversity on the cost of a lower output → additional agricultural area is needed elsewhere to produce the same amount of output.

Relation to proposal by UNEP-SETAC

Regional CFs (as basis for global CFs)	Assessment method based on country-side SAR model (Chaudhary et al., 2015)	This assessment method
Species loss assessed on the scale of:	ecoregion (12 to 4'650'164 km ² , median: 65'024 km ²)	landscape (16 km ²)
Accounts for:	species loss due to habitat loss	species loss due to habitat loss and agricultural intensity
Species loss of scale considered allocated to:	different land use types	specific area of agricultural used area (UAA) within land scape under a specific intensity
Considers:	 natural habitat area per land use type within ecoregion 	 (semi-)natural habitat area within landscape; land use intensity within UAA in the upcoming version: fragmentation of (semi-)natural habitats
Taxa considered:	vascular plants / birds / mammals / amphibians / reptiles	vascular plants / birds / arthropods (wild bees, hover flies, carabids, spiders)
FIBL WWW.fibl.org		17

Spatial resolution matters!

Conclusions

- Land use types are probably to coarse to distinguish impacts between different land use intensities.
- Including parameters of (agricultural) land use intensity within impact assessment models for biodiversity requires a high spatial resolution
 - →Only in this case interactions between land use intensity and (semi-)natural habitats become visible!

Acknowledgement

- This study was part of the research project "Improving LCA methodology to comprehensively model organic farming".
- > Funded by:

This project is supported by the **Coop Sustainability Fund**.

and

the Federal Office for the Environment (FOEN), Switzerland.

