

Assessing natural resources as area of protection in sustainability assessment

Jo Dewulf^{1,2} &

Lucia Mancini¹, Serenella Sala¹, Gian Andrea Blengini¹, Pilar Swart²

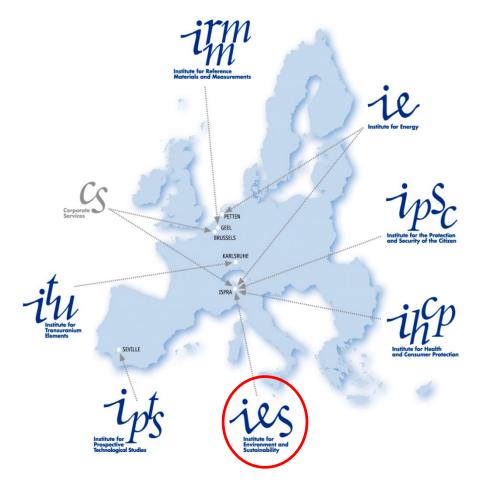
¹Joint Research Center, European Commission ²Ghent University

April 11th, 2014

Table of contents

- 1. Introduction
- 2. Natural resources as Area of Protection
- 3. Natural resource accounting with exergy
- 4. Ore grade change as indicator for metals
- 5. Criticality of resources
- 6. Conclusions

1. Introduction



The JRC inside the European Commission

European Commission,
Joint Research Centre (JRC),
Institute for Environment and
Sustainability (IES)

"The mission of the IES is to provide scientific-technical support to the European Union's policies for the protection and sustainable development of the European and global environment"

The "Sustainability Assessment" Unit

The Sustainability Assessment Unit fosters sustainability principles in EU policies by developing an integrated assessment framework towards environmental quality and socio-economic viability in the decision making process.

Two existing integrative platforms are at the core of the development:

- The Land Use Modelling Integrated Sustainability Assessment Platform (LUMP/LUISA)
- The European Platform on Life Cycle Assessment (EPLCA).

Ghent University:

Research group ENVOC:

- Education at Ba and Ma: mainly in Bioscience Engineering curricula
- Research in:
 - Environmental chemistry of organic micropollutants
 - Removal of organic micropollutants in waste streams
 - Clean technology:
 - relying on principles of thermodynamics& life cycle assessment
 - method development
 - collaboration with biobased, chemical, pharma, waste & metal sector

2. Natural resources as Area of Protection

Environmental LCA: three AoP:

- Human Health
- Ecosystem Quality
- Natural Resources

LCA in practice:

EC: Product Environmental Footprint:

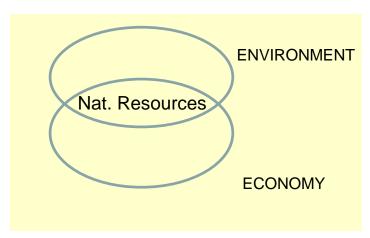
- 14 impact categories
- Major emphasis on Human Health& Ecosystem Quality
- Explicitly linked to Natural Resources:
 - Resource Depletion mineral, fossil
 - Resource Depletion water
 - Land Transformation

Abiotic resource use category	Operational method	Water	Land	Flow energy resources (a)	Atmosph. resources	Metals and minerals	Fossil energy	Nuclear energy
Resource accounting methods (RAM)	CED / PED			X			X	X
	CE_xD	X		X	X	X	X	X
	ICEC / ECEC	X		X	X	X	X	X
	CEENE	X	X	X	X	X	X	X
	SED	X	X	X	X	X	X	X
	Ecological Footprint		X				$X^{(b)}$	X(c)
	Water Footprint	X						
	Ecological Scarcity			X		Partial ^(d)	X	X
	Abiotic depletion potential (fossil fuels) ^(e)						X	
	Impact 2002+ ('non- renewable energy')						X	X
	Recipe Midpoint (fossil and water depletion)	X					X	
Resource depletion at midpoint level	EDIP 97/2003		•	Partial ^(g)	•	X	X	X
	Abiotic depletion potential					X		X
	Biotic Production Potential (BPP)		X					
	Ecological Scarcity (water)	X						
	Abiotic depletion potential (water)	X						
Resource depletion at endpoint level	EI99	•	•	•	•	X	X	•
	Impact 2002+ ('mineral extraction')					X		
	Recipe Endpoint					X	X	X
	EPS2000					X	X	X
	Freshwater depletion	X						

Joint Research Centre

Natural resources:

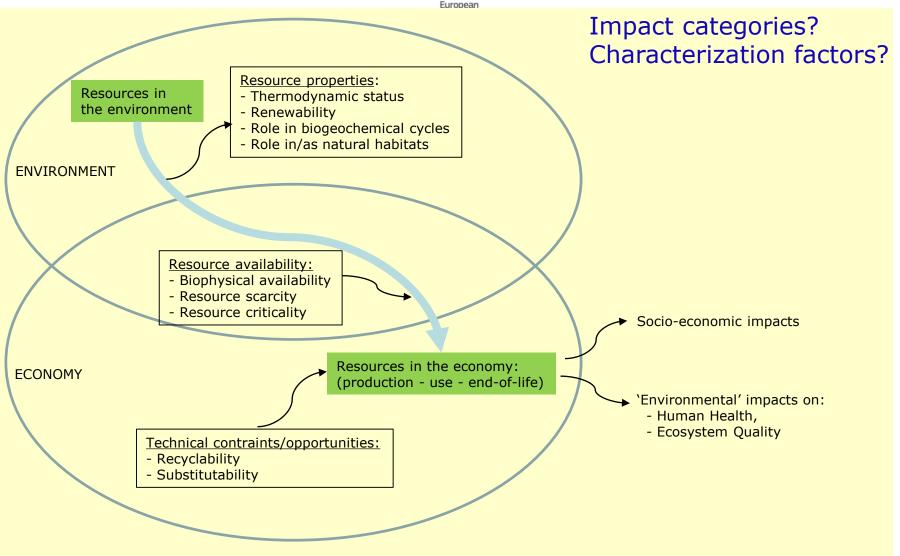
much more than water, conventional fossils and minerals ...



Natural resources in LCA:

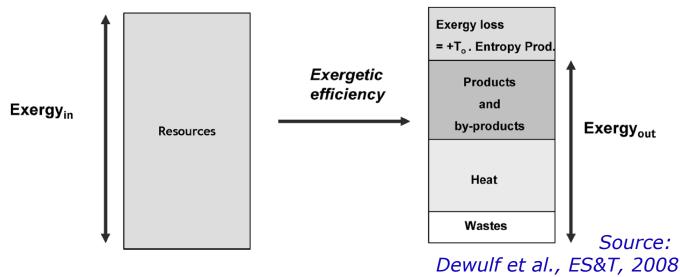
- Anthropocentric perspective:
 - 'decreased availability'
 - 'Future effort'
 - = provisioning for humans
- Natural resources:
 - also other 'ecosystems services'*:
 - regulation services:mediation, filtration, ...
 - cultural services: aesthetic,heritage, ...
 - even a role in an ecocentric perspective:
 - habitat
 - Inorganic/organic elements in biogeochemical cycles

Maes et al., Mapping and Assessment of Ecosystems and their services, JRC-EC, 2013



What do we like to "protect" with AoP "Natural resources":

- Natural resources in an ecocentric context?
 - natural resources in shaping natural habitats
 - natural resources in natural biogeochemical cycles
- Natural resources from their service point of view?
 - Provisioning services
 - Regulating services
 - Cultural services
- Natural resources from their role in society?
 - Economic sustainability?
 - Social sustainability?


3. Natural resource accounting with exergy

Exergy:

Maximum amount of work we can obtain from a resource

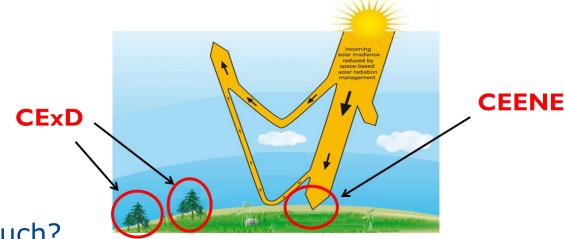
Cumulative Exergy:

Maximum amount of work we have taken away in a life cycle perspective: at the 'cradle'

Methods/characterisation factor for natural

resources: - CExD: Bösch et al., ES&T, 2007

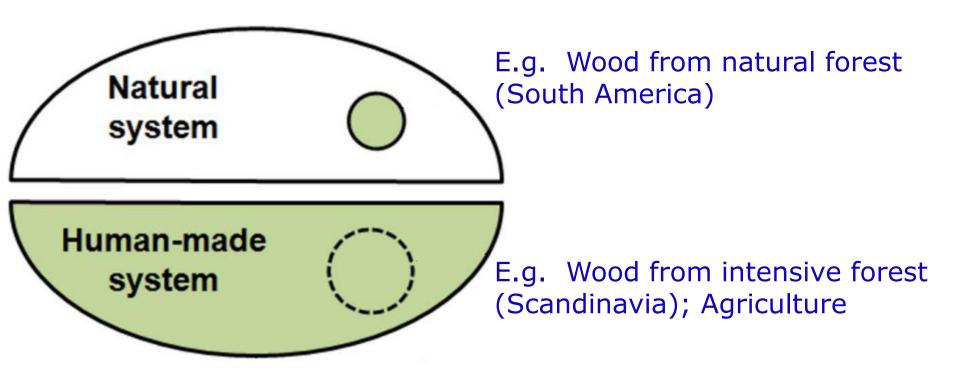
- CEENE: Dewulf et al., ES&T, 2007



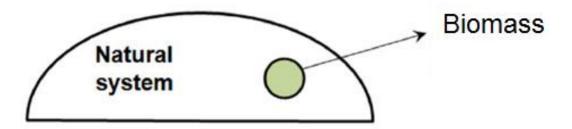
Cumulative Exergy for natural resources:

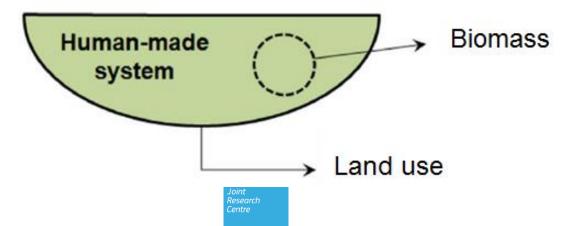
- Accounting thermodynamic value
- All kind of resources can be characterized
- Challenge: land occupation/biomass:

how do we quantify what we have taken away by depriving land from the naturalenvironment?



- Biomass harvested?
- Solar radiation? How much?
- Ability to natural NPP?
- extensive/intensive land use?


Natural vs. Human-made systems:

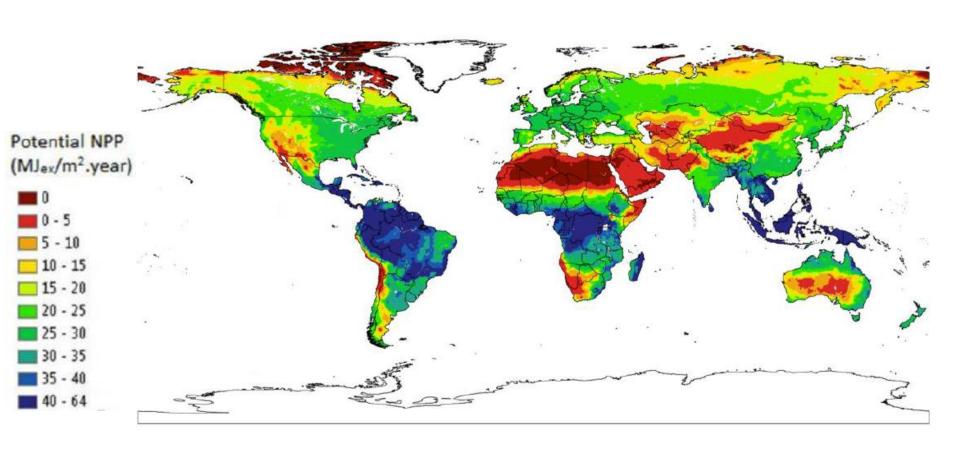

Source: Alvarenga et al., IJLCA, 2013

- For natural systems → Biomass content (as CExD):

- For human-made system → Land (as CEENE), but using the natural potential NPP as proxy

- NPP = Net primary production:

The amount of biomass produced in a certain land area, at a certain time


Natural potential NPP:

the amount of natural biomass that **would be** produced in a certain land, if not occupied by humans

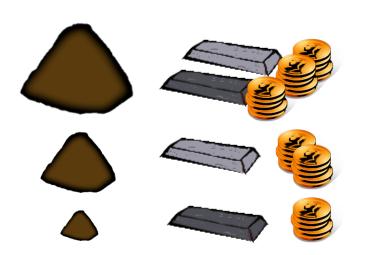
Haberl et al. (2007) → Worldwide data

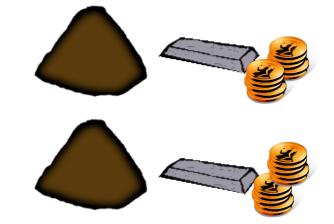
Source: Alvarenga et al., IJLCA, 2013

4. Ore grade change as indicator for metals

- Methods to determine impact on resource availability:
 Ore grade based methods closest to mining reality
- Typical limitations:
 - Use of old data and simplifying assumptions
 - Co-mining not consistently considered
 - use of fixed costs per kg of ore
 - relation between ore grade, technology and effort
- To be verified with data from actual mining practice

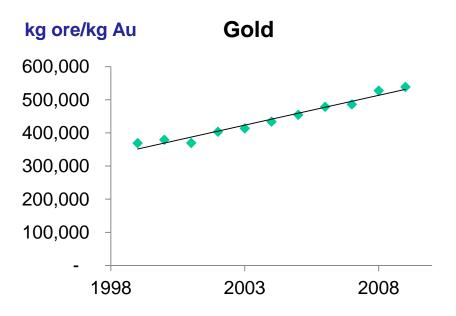
Data source: Raw Materials Data

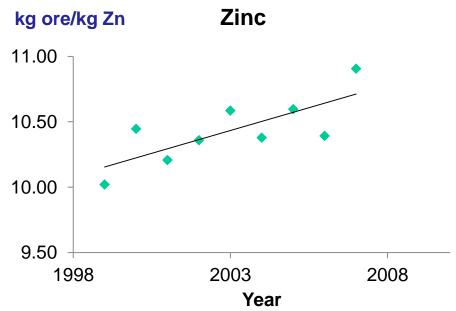

Contains data on individual mines located all over the world for the years (1998-2010):


- ore production
- ore grades
- metal production per metal
- mine type: underground, open pit

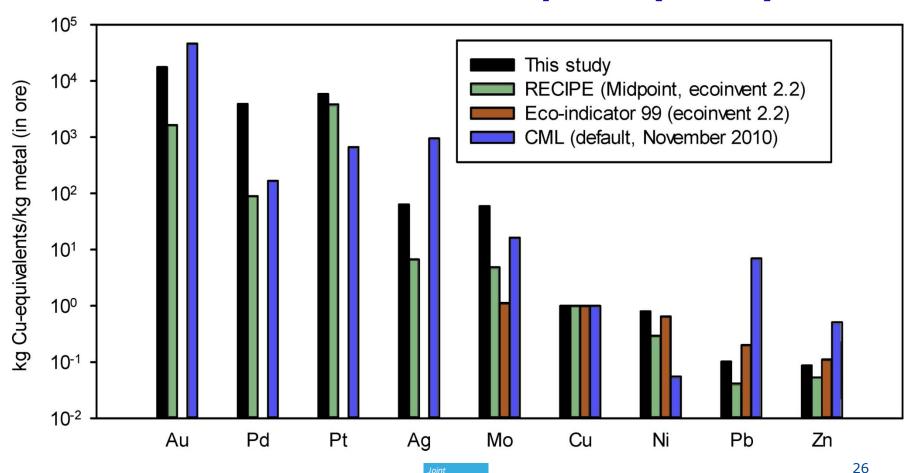
Typically more than one metal produced at a mine: need to distribute ore quantity over the produced metals, based on economic value of the metals

Average ore production for metal i =

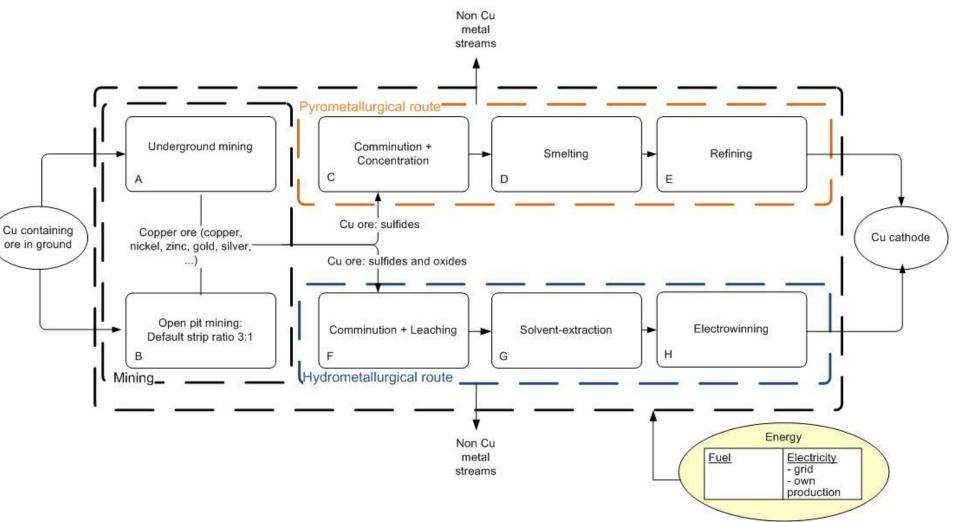

Σ ore production attributed to metal i


Σ metal i contained in ore

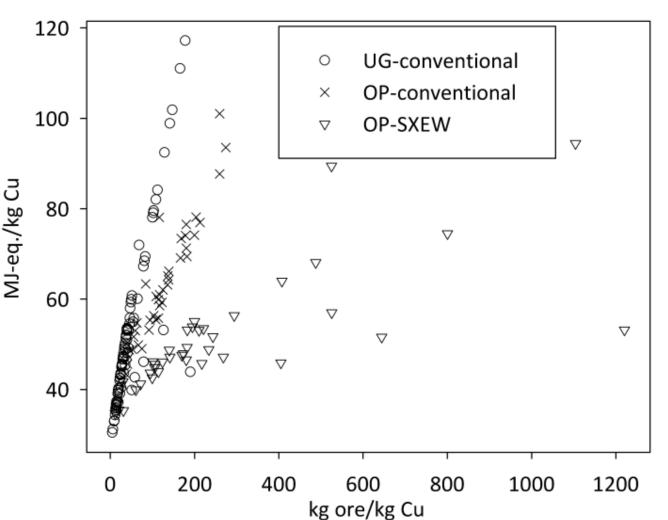
Results: Evolution of average ore demand



Source: Swart & Dewulf, RCR, 2013



Results: Slope as indicator compared to existing methods for metal resource impacts (Cu=1)



Technology innovation: overcoming ore grade quality decrease?

Efforts/Energy: not necessarily linear with ore grade

Source: Swart & Dewulf, ES&T, 2013

5. Criticality of resources

Critical Raw Materials

Critical (in terms of economic criticality):

"Criticality of a resource means that it is scarce and at the same time essential for the present society."

Methods:

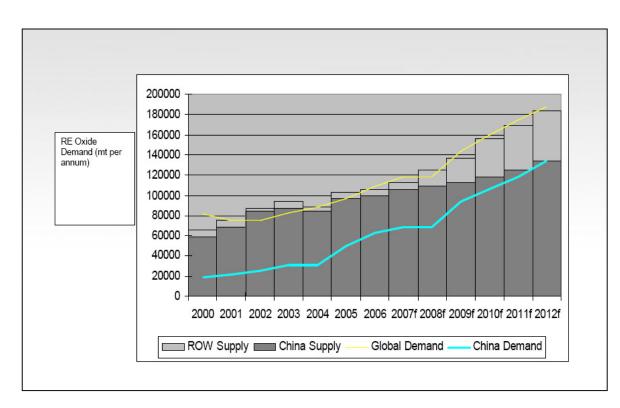
- US: Graedel et al., 2012
- EU: DG ENTR
- → Different methods result in different results ...

Impact category?
Characterization factors?

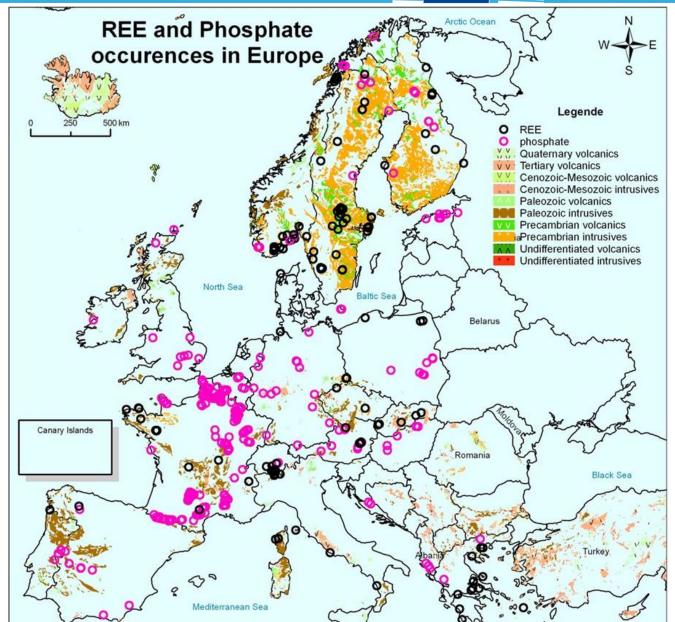
see also: Mancini et al., Security of supply and scarcity of raw materials. JRC-EC, 2013

Criticality in the European context: factors:

- <u>Economic importance</u>: added value of the economic sector using a raw material
- Supply risk:
 - level of concentration of worldwide production of a raw material:
 Herfindahl-Hirschman Index (HHI)
 - political and economic stability of producing countries:
 Worldwide Governance Indicator, Worldbank (WGI)
 - potential of substitution of a raw material:
 Substitutability index (experts' judgement) (σ)
 - recycling rate: share of secondary materials in raw material in EU consumption (ρ)


$$SR_i = \sigma(1 - \rho_i) HHI_{WGI}$$

- <u>Environmental country risk</u>: EPI (Country level (!))


CRM: a changing framework ...

- -China's own demand was expected to reach its production in 2012
- China restricted the REEs exports at 13% per year since 2004

Source: Sadeghi et al., J. Geochem. Expl., 2013

6. Conclusions

Available work on AoP Natural Resources:

- AoP Natural Resources in environmental LCA:
 - incomplete list of natural resources covered
 - anthropocentric point of view
- AoP Natural Resources:

Need to see it beyond environmental LCA

- Natural resources as AoP in Sustainable development, relying on:
 - elements of classical environmental LCA
 - Ecosystem services?
 - Role in ecosystems as such?
 - Economic sustainability: criticality as a base?
 - primary supply risk
 - management in society (e.g. recycling rate)
 - Social LCA:
 - SHDB: negative impact
 - What about positive impact?

Joint Research Centre

Contacts:

jo.dewulf@jrc.ec.europa.eu

http://sa.jrc.ec.europa.eu/ (Sustainability Assessment Unit website)

