Ecological scarcity 2013:
Overview and main elements of the update and its implications

Rolf Frischknecht, Sybille Büsser Knöpfel
treeze Ltd., Uster
DF 54, 5.12.2013
Eco-factor Carbon dioxide (CO$_2$):

460 UBP/kg
Contents

- Project outline
- Methodology and main elements of the update
- Focus: greenhouse gases, nuclear wastes
- Eco-factor time series
- Synthesis
Project goal

- Update of Swiss eco-factors 2006
- Track
 - Swiss environmental legislation
 - Swiss emission situation
- Expand to new/emerging environmental impacts
- Provide
 - ready to use eco-factors Switzerland 2013
 - method applicable in other countries/regions
Project organisation

Commissioner
- FOEN, P. Gerber

Steering group
- P. Gerber (Lead), FOEN
- N. Egli, FOEN
- G. Hildesheimer, Öbu
- A. Braunschweig, E2

Advisory group
- G. Hildesheimer (Lead)
- various companies
- P. Gerber
- A. Braunschweig
- R. Frischknecht

Discussion group Methodology
- R. Frischknecht (Lead)
- A. Braunschweig, E2
- P. Gerber, FOEN
- E. Egli, FOEN
- E. Franov, carbotecch
- M. Scheringer, ETHZ

Contractors
- R. Frischknecht, treeze,
 Main Contractor, (Lead)
- staff at treeze
- ideja communication
- ETHZ, ICB
Advisory group

- Christian Brütsch, RePower AG
- Patrik Burri, Credit Suisse
- Roland Högger, Geberit International AG
- Elisabeth Huber, Geberit International AG (until 12. 2012)
- Martin Kilga, Sinum AG
- Peter Müller, Knecht und Müller AG
- Paul Schnabl, Die Schweizerische Post
- Jörg Schwille, Schweizer Metallbau AG
- Marcel Sutter, BWK-FMB AG
- Patrik Walser, Migros Genossenschaft
- Anne Wolf, Die Schweizerisch Post
Project phases

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Topics discussed</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10</td>
<td>Additional ecofactors and adaptation of methodology</td>
<td></td>
</tr>
<tr>
<td>06.11</td>
<td>Feedback on proposed new elements</td>
<td>normalisation</td>
</tr>
<tr>
<td>07.11</td>
<td>Background investigations for Eco-factors 2013 and determination of</td>
<td>multiple impact assessment</td>
</tr>
<tr>
<td></td>
<td>draft Eco-factors 2013</td>
<td>rounding</td>
</tr>
<tr>
<td>04.12</td>
<td>1st test phase</td>
<td>POPs and bioaccumulating substances</td>
</tr>
<tr>
<td>05.12</td>
<td>Revision of draft Eco-factors Switzerland 2013</td>
<td>land use in different biomes</td>
</tr>
<tr>
<td>09.12</td>
<td>2nd test phase</td>
<td>abiotic resources</td>
</tr>
<tr>
<td>11.12</td>
<td>Final set of Eco-factors Switzerland 2013</td>
<td></td>
</tr>
</tbody>
</table>

Contractors
- Discussion group methodology
- Advisory group
The ecological scarcity formula

\[
\text{Eco-factor} = \frac{K}{\text{Characterization (if applicable)}} \cdot \frac{1 \cdot UBP}{F_n} \cdot \left(\frac{F}{F_k}\right)^2 \cdot c
\]

- **K**: Characterization factor of a pollutant or a resource
- **Flow**: Load of a pollutant, quantity of a resource consumed or level of a characterized environmental pressure
- **\(F_n \)**: Normalization flow: Current annual flow with Switzerland as the system boundary
- **\(F \)**: Current flow: Current annual flow in the reference area
- **\(F_k \)**: Critical flow: Critical annual flow in the reference area
- **c**: Constant \((10^{12}/a)\)
- **UBP**: Eco-point: the unit of the assessed result
The regionalised ecological scarcity formula

\[\text{Eco-factor}_{\text{Region 1}} = K \cdot \frac{1 \cdot \text{UBP}}{F_{n}^{\text{CH}}} \cdot \left(\frac{F_{\text{Region 1}}}{F_{k}^{\text{Region 1}}} \right)^2 \cdot c \]

- **K** = Characterization factor of a pollutant or a resource
- **Flow** = Load of a pollutant, quantity of a resource consumed or level of a characterized environmental pressure
- **\(F_{n}^{\text{CH}} \)** = Normalization flow: current annual flow with Switzerland as the system boundary
- **\(F_{\text{Region 1}} \)** = Current flow: current annual flow within Region 1
- **\(F_{k}^{\text{Region 1}} \)** = Critical flow: critical annual flow within Region 1
- **c** = Constant \((10^{12}/a)\)
- **UBP** = Eco-point: the unit of the assessed result
Final report: Structure and new elements

- **Part I: Life cycle assessment in short**
 - Basic information for decision makers
 - Questions and answers concerning Life Cycle Assessment (FAQ)

- **Part II: Method fundamentals**
 - The ecological scarcity method
 - Derivation principles
 - Application principles
 - Characterisation and grouping by environmental issues

- **Part III: Eco-factors for Switzerland**
<table>
<thead>
<tr>
<th>Environmental topic</th>
<th>1 tier grouping</th>
<th>2 tier grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water resources</td>
<td>Water resources</td>
<td>Water resources</td>
</tr>
<tr>
<td>Energy resources</td>
<td>Energy resources</td>
<td>Abiotic resources</td>
</tr>
<tr>
<td>Mineral primary resources</td>
<td>Mineral resources</td>
<td></td>
</tr>
<tr>
<td>Land use</td>
<td>Land use</td>
<td></td>
</tr>
<tr>
<td>Non radioactive waste to deposit</td>
<td>Non radioactive waste</td>
<td>Soil</td>
</tr>
<tr>
<td>Radioactive waste to deposit</td>
<td>Radioactive waste</td>
<td></td>
</tr>
<tr>
<td>Climate change</td>
<td>Climate change</td>
<td>Climate change</td>
</tr>
<tr>
<td>Ozone layer depletion</td>
<td>Ozone depletion</td>
<td>Ozone depletion</td>
</tr>
<tr>
<td>Main pollutants and PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinogenic substances into air</td>
<td>Air quality</td>
<td>Air quality</td>
</tr>
<tr>
<td>Heavy metals into air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive substances into air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pollutants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy metals into water</td>
<td>Water quality</td>
<td>Water quality</td>
</tr>
<tr>
<td>POP into water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioactive substances into water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides into soil</td>
<td>Soil quality</td>
<td>Soil quality</td>
</tr>
<tr>
<td>Heavy metals into soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>Noise</td>
<td>Noise</td>
</tr>
</tbody>
</table>
Climate change: Target and characterisation

- **Two targets**
 - Act on the reduction of CO$_2$-Emissions (CO$_2$-Gesetz): minus 20 % (relative to 1990) by 2020
 - Sustainable Development Strategy 2012-2015: minus 50 to 85 % reduction by 2050

- **Target (agreed by FOEN):** minus 80 %

- **Characterisation:**
 - GWP of 4th IPCC assessment report 2007
 - No adjustments for emissions of greenhouse gases in lower stratosphere (by airplanes)
Greenhouse Gases, Ecofactors

<table>
<thead>
<tr>
<th></th>
<th>2013</th>
<th>2006</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalisation Flow</td>
<td>53’040</td>
<td>53’034</td>
<td>emissions 2009</td>
</tr>
<tr>
<td>Actual Flow</td>
<td>53’040</td>
<td>45’436</td>
<td></td>
</tr>
<tr>
<td>Critical Flow</td>
<td>10’766</td>
<td>11’183</td>
<td>80 % reduction relative to 1990</td>
</tr>
<tr>
<td>Weighting Factor</td>
<td>24.3</td>
<td>16.5</td>
<td></td>
</tr>
<tr>
<td>Ecofactor</td>
<td>460</td>
<td>310</td>
<td></td>
</tr>
</tbody>
</table>

- Increase of CO₂ ecofactor by 50 % compared to 2006
Radioactive wastes, new concept

- damage potential instead of «(political) acceptance»
- Radiotoxicity Index (RTI), dependent on
 - activity of radionuclide
 - dose factor of radionuclide
 - limit value of dose
- international measure used by NAGRA (National Cooperative for the Disposal of Radioactive Waste)
radioactive wastes, actual and critical flow

- actual flow (Data source: NAGRA): Maximum value RTI inventory Switzerland
- critical flow (Data source: NAGRA): RTI at time of final closure of deposit: presumably 2115
- Ordinance of Closedown and Waste disposal funds for nuclear installations (Stilllegungs- und Entsorgungsfondsverordnung)
- Nuclear Energy Act (Kernenergiegesetz (KEG)), § 39, cypher 2: «... the Federal Council shall order the closure of the repository, if the permanent protection of humans and the environment is ensured.”
Radiotoxicity inventory -2050 of radioactive wastes in Switzerland
Radiotoxicity inventory 2050+ of radioactive wastes in Switzerland

Time of final closure = permanent protection of humans and the environment is ensured

c. 2115 Years since 2050 (logarithmic)
radioactive wastes, characterisation

- Basis: Radiotoxicity index (RTI)
- Reference «substance»: high active waste (HAA)
- Characterisation factors \(\text{cm}^3 \ HAA\text{-eq/cm}^3 \)
 - low and medium active wastes: 0.000045
 - alpha toxic wastes: 0.0015
 - high active wastes (incl. spent fuel): 1
- High active wastes are important
- Low active wastes from hospitals etc. are marginal
Radioactive Wastes, Ecofactors

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>2013</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low and medium active wastes</td>
<td>2.1 UBP/cm³</td>
<td>3’300</td>
</tr>
<tr>
<td>Spent fuels, high active wastes, alpha toxic wastes</td>
<td>35’000 UBP/cm³</td>
<td>18’000</td>
</tr>
<tr>
<td>High active wastes (including spent fuel)</td>
<td>46’000 UBP/cm³</td>
<td></td>
</tr>
<tr>
<td>Alphatoxic wastes</td>
<td>69 UBP/cm³</td>
<td></td>
</tr>
</tbody>
</table>

- EF low and medium active wastes much lower
- EF high active waste approx. doubled
- In total, very similar assessment like in 2006
Evolution of ecofactors of selected pollutants/resources
Evolution of the shares of Swiss environmental impacts (UBP)
Evolution of Switzerland’s ecopoints (UBP)
Actual impacts Switzerland: Relative importance and change

<table>
<thead>
<tr>
<th>Importance</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>higher</td>
<td>high</td>
</tr>
<tr>
<td>lower</td>
<td>low</td>
</tr>
</tbody>
</table>

- Climate change: high
- Energy resources: low
- Abiotic resources: low
- Noise: low
- Ozone depletion: low
- Water use: low
- Non radioactive waste: low
- Radioactive waste: low
- Soil quality: low
- Water quality: low
- Air quality: low
Actual situation and environmental target (in UBP’13)
Synthesis: «UBP-view» on Swiss environmental situation

- Climate change: more and more important
- Air and water quality: slightly less important
- Ozone depletion and non radioactive wastes significantly less important
- Overall reduction of environmental impacts (in UBP) by about 50% to reach Swiss environmental targets
4th generation ecofactors
Switzerland brings you

● up to date Swiss ecofactors
● approach ready to be implemented in other countries/regions
● ecofactors covering new impacts such as resource dispersion, noise and persistent organic pollutants
● broadened regionalised ecofactors for land use and water use
● no revolution but evolution
Thank you very much for your attention!

Contact: frischknecht@treeze.ch
Website: www.treeze.ch

Acknowledgement:

Funding: Swiss Federal Office for the Environment FOEN, Öbu
Co-operation (until 10.2012): Karin Flury, Matthias Stucki
Suggestions, preparatory work and practical tests:
Peter Gerber, Arthur Braunschweig, Gabi Hildesheimer, Norbert Egli
Members of the advisory group, and
Hans Bögli, Laura de Baan, Fredy Dinkel, Emil Franov, Paul Filliger, Ernst Furrer, Daniel Hartmann, Bettina Hitzfeld, Blaise Horisberger, Michael Hügi, Harald Jenk, Sybille Kilchmann, Martin Kilga, Thomas Köllner, Nina Mahler, Sandy Ruiz Mendoza, Reto Muralt, Beat Müller, Carla Ng, Christian Pillonel, Robin Quartier, Monika Schaffner, Kaarina Schenk, Martin Scheringer, Ulrich Sieber, Peter Straehl, Josef Tremp, Roland von Arx
Appendix
Electricity supply systems
Electricity supply systems
Transport services
Transport services
construction materials
construction materials
Environmental impacts in Switzerland (UBP’13)

Frischknecht et al. forthcoming