Effects of distribution choice on the modeling of LCI uncertainty Stéphanie Muller, Chris Mutel, Pascal Lesage, Réjean Samson 2013/09/13 53rd LCA Discussion Forum # **INTRODUCTION** When performing LCA uncertainty assessments: Major LCA software offer the possibility to run Monte Carlo analysis → The practionner needs to define PDF to model a datum with its uncertainty #### **INTRODUCTION** When performing LCA uncertainty assessments: Major LCA software offer the possibility to run Monte Carlo analysis → The practionner needs to define PDF to model a datum with its uncertainty Lack of time and lack of data, for modelling both background and foreground: **Experts' judgments to derive PDFs** Use of default distributions - → Beta (Kennedy et al., 1996; Canter et al. 2002; Wang et al. 2012) - → Beta PERT (Koffler and Kalish, 2012) - → Ecoinvent database Lognormal (Frischknecht et al., 2005) #### **PROBLEMATICS** # DOES THE CHOICE OF THE DISTRIBUTION MATTER WHEN PERFORMING A MONTE CARLO LCA UNCERTAINTY ASSESSMENT? # HOW DOES THE CHOICE OF THE DEFAUT DISTRIBUTION DRIVE RESULTS' CHARACTERISTICS? # **OUTLINE** - 1. PDFs CHARACTERISTICS - 2. THE SPECIFIC CASE OF THE LOGNORMAL DISTRIBUTION - 3. DEVELOPED METHODOLOGY TO SWITCH DISTRIBUTIONS - 4. MAIN RESULTS - 5. SOME THOUGHTS # 1. PDFs CHARACTERISTICS Generally distributions are defined through: - a. Their location parameter(s) (i.e. range) - b. Their shape - a. Bounded vs. unbounded distributions # 1. PDFs CHARACTERISTICS Generally distributions are defined through: - a. Their location parameter(s) (i.e. range) - b. Their shape 7 - a. Bounded vs. unbounded distributions - b. Symmetric vs. skewed distributions #### 8 8 0.30 9.0 9.0 0.20 Density Density Density 4. 4. 0.10 0.2 0.2 0.00 0.0 0.0 0.0 0.5 0 0.5 0.0 1.5 2.0 2.5 1.0 3.0 **Negatively skewed** #### 2. THE LOGNORMAL DISTRIBUTION The distribution by default to model uncertainty on parameters in the Ecoinvent database: Is the result of the multiplication of independent processes → as many variables in natural science Its resemblance to the normal distribution → definition parameters that can more easily be determined Is a positive and a positively skewed distribution → convenient to model physical parameters with large uncertainties or based on experts' judgments Permits to apply analytical uncertainty propagation methods # WHAT IF THE LOGNORMAL DISTRIBUTION IS NOT THE ONE USED BY DEFAULT? Distributions switch Test the lognormal distribution against positively skewed distributions: A bounded distribution: triangular Similar distributions but less skewed: gamma and weibull #### How to switch: Gamma and weibull: → Solve the equations that link the parameters to the **median and** variance of the lognormal distributions Triangular distribution defined by **location parameters**: → The min and max are derived from the lognormal 95th confidence interval Distributions switch Datasets selection LCA and Monte Carlo calculations Results comparison Among all the processes available in Ecoinvent v2.2. → 100 were kept Distributions switch Datasets selection LCA and Monte Carlo calculations Results comparison LCA calculations based on the Global Warming category for each process **Uncertainty assessment based on a Monte Carlo simulation** - → **5000 steps** calculations - → For the **initial distributions** and for **the switch** from the lognormal to the other "by default" distribution #### Software used → Brightway2: open source tool to perform LCA calculations For more info http://brightwaylca.org/ Distributions switch Datasets selection LCA and Monte Carlo calculations Results comparison Assessment of differences in the resulting distributions: - → the shape - → the range - → the **determistic value**, the median **Use of descriptive statistics** # **SOME RESULTS** # 4. RESULTS – LOGNORMAL AGAINST TRIANGULAR # 4. RESULTS – LOGNORMAL AGAINST GAMMA # 4. RESULTS – LOGNORMAL AGAINST WEIBULL #### **5. SOME THOUGHTS** A sensitivity assessment around the use of "by default distributions" Showing the global behaviour → Globally, same conclusions for all datasets Resulting distributions are not the same → Depend on the characteristics of the initial used distributions Distributions can easily be switched More flexibility for the analyst - → Choosing the distribution based on the data characteristics - → Parameters derivation based on some assumptions - → Being consistent in the way to model uncertainties #### **REFERENCES** - Canter, K., D. Kennedy, et al. (2002). "Screening stochastic Life Cycle assessment inventory models." The International Journal of Life Cycle Assessment **7**(1): 18-26. - Frischknecht, R., N. Jungbluth, et al. (2005). "The ecoinvent Database: Overview and Methodological Framework (7 pp)." <u>The International Journal of Life Cycle Assessment</u> **10**(1): 3-9. - Kennedy, D., D. Montgomery, et al. (1996). "Data quality: Stochastic environmental life cycle assessment modeling." The International Journal of Life Cycle Assessment 1(4): 199-207. - Koffler, C. and D. Kalish (2012). <u>Quick-but-Clean? A Screening Tool using BERT Estimates to Incorporate Uncertainty</u>. LCA XII, Tacoma (WA). - Limpert, E., W. A. Stahel, et al. (2001). "Log-normal Distributions across the Science: Keys and Clues." BioScience **51**(5): 341-351. - Wang, E., Z. Shen, et al. (2012). "An AHP-weighted aggregated data quality indicator (AWADQI) approach for estimating embodied energy of building materials." The International Journal of Life Cycle Assessment: 1-10. # **COMMITTED PARTNERS** # **BOMBARDIER** # **THANKS FOR YOUR ATTENTION** stephanie.muller@polymtl.ca #### **Cullen and Frey graph** # **DATASETS SELECTION** # 100 were kept - → their differences was assessed through a correlation analysis for 12 LCIA methods - → The "most" different were kept # **EXAMPLE**