Environmental and economic assessment of regional building materials industries combining material-flow-analysis, input-output-analyses and life-cycle-assessment

Ronny Meglin M.Sc.
Prof. Dr. Guillaume Habert
Prof. Dr. Susanne Kytzia

74th LCA-Forum, 29.06.2020
High construction activity and limited resources call for circular economy!

Ellen MacArthur Foundation; World Economic Forum; Boston Consulting Group
"Co-Evolution of Business Strategies in Material and Construction Industries and Public Policies"
Research Questions

“Co-Evolution of Business Strategies in Material and Construction Industries and Public Policies” – “CUBIC”

Research project funded by the Swiss National Science Foundations (2017-2021).

Guiding research questions:

• What are the central co-evolution mechanisms driving alternative business models and regulation in the Swiss construction industry?
• How can this co-evolution process be directed towards sustainability?
The Challenge

- We need to understand the consequences of public policies or alternative business models regarding a sustainable industry, especially in a regional context.

- We need **instruments** that evaluate the environmental and economic effects of public policies on a region or an industry in terms of sustainable development and circular economy.

How to assess an industry?
<table>
<thead>
<tr>
<th>Issue of concern</th>
<th>Specific concerns related to environmental impacts, supply security, technology development within certain businesses, economic activities, countries, regions</th>
<th>General environmental and economic concerns related to the throughput of substances, materials, manufactured goods at the level of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object of interest</td>
<td>Substances
chemical elements or compounds</td>
<td>Materials
raw materials, semi-finished goods</td>
</tr>
<tr>
<td>Products
(manufactured goods)
batteries, cars, computers, textiles</td>
<td>Businesses
establishments, enterprises</td>
<td>Economic activities
mining, construction, chemical industry, iron & steel industry</td>
</tr>
<tr>
<td>Countries/regions
total materials
groups of materials, particular materials</td>
<td>Countries/regions
total materials
groups of materials, particular materials</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Substance Flow Analysis</th>
<th>Material System Analysis</th>
<th>Life Cycle Assessment</th>
<th>Business level MF Analysis</th>
<th>Input-Output Analysis</th>
<th>Economy-wide MF Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of measurement tool</td>
<td>Substance Flow Accounts</td>
<td>Individual Material Flow Accounts</td>
<td>Life Cycle Inventories</td>
<td>Business Material flow accounts</td>
<td>Physical Input-Output Tables, NAMEA-type approaches</td>
<td>Economy-wide Material Flow Accounts</td>
</tr>
</tbody>
</table>

Source: OECD, based on Bringezu and Moriguchi (2002).
Which Methods to use?

<table>
<thead>
<tr>
<th></th>
<th>MFA</th>
<th>IOA</th>
<th>LCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>• investigate technical processes</td>
<td>• economic tool for analysing interindustrial interdependences</td>
<td>• decision-support tool</td>
</tr>
<tr>
<td></td>
<td>• systematic evaluation of flows and stocks</td>
<td></td>
<td>• bottom-up methodological framework encompassing all the impacts of a product</td>
</tr>
<tr>
<td>System definition</td>
<td>• Functional or geographical</td>
<td>• Geographical</td>
<td>• Functional</td>
</tr>
<tr>
<td>Allocation</td>
<td>• Mass proportional</td>
<td>• Value proportional</td>
<td>• various choices (Mass or value proportional, System expansion, …)</td>
</tr>
<tr>
<td>Advantage</td>
<td>• Flexibility with regard to model assumptions</td>
<td>• Represents the whole economy/industry</td>
<td>• Detailed evaluation of a product</td>
</tr>
<tr>
<td></td>
<td>• Mass balancing (filling data gaps)</td>
<td>• Public data available (on nationwide level)</td>
<td>• Product comparisons</td>
</tr>
<tr>
<td></td>
<td>• Basis for impact assessment methods</td>
<td>• Possibility to extend (MRIO, EEIO)</td>
<td>• Multi-dimensional</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>• Availability of data</td>
<td>• Low resolution due to high aggregation</td>
<td>• subjective definition of the system boundary (e.g. EoL-Phase)</td>
</tr>
<tr>
<td></td>
<td>• One-dimensional</td>
<td>• partial simplifications and assumptions</td>
<td>• How to represent services?</td>
</tr>
<tr>
<td></td>
<td>• Services are not represented</td>
<td>• Spatial boundaries</td>
<td></td>
</tr>
</tbody>
</table>

Single methods can’t provide a comprehensive economic and environmental assessment of a complex system in the context of a circular economy
Proposal: Combination of Methods

Increase the resolution:
Industry-wide MFA

Economy-wide MFA
[kg]
Hybrid-LCA / EEIOA
[per CHF]

MFA
[kg]

IOA
PIOT
[kg]
MIOT
[CHF]

LCA
[per unit]

Combination enables us to assess the impacts of all processes in the regional industry

Availability of Data:
MFA-Database (KAR-Modell)
Case-Studies
Assessment-Model

Translation into monetary units can promote communication with a wide audience and raise social awareness of environmental issues.
Assessment-Model – System Boundary

System Boundary:
Output of the Buildings-Materials-Industry in the defined Region over a specified period

Focus:
- Regional comparison
- Boundary analysis in the context of a change in regional demand
With this Assessment-Model, we can …

- indicate the **impacts of changing material flows** or innovations on the life cycle most relevant for generating value added, causing emissions and consuming natural resources on a regional level

- highlight the **impact of a specific business-model** and show how this effects environmental and economic performance of a regional building materials industry

- derive **policy recommendations** which promote the development of a circular economy in the building materials industry in a regional context
THANK YOU FOR YOUR ATTENTION

Ronny Meglin M.Sc.
University of Applied Sciences Eastern Switzerland
Oberseestrasse 10
CH-8640 Rapperswil

ronny.meglin@hsr.ch

LinkedIn

Supported by the Swiss National Science Foundation (SNSF) within the framework of the National Research Programme “Sustainable Economy: resource-friendly, future-oriented, innovative” (NRP 73)’