

Developing an LCA software in Hungary for a more sustainable production

Dr. Klára Szita Tóthné, associate professor, University of Miskolc Department of Regional Economics Tímea Molnár Siposné, PhD student, University of Miskolc Department of Mining and Geotechnology

> 27th LCA Discussion Forum November 17, 2005, Swiss Federal Institute of Technology Zürich

SOME WORDS ABOUT PREMISES...

In Hungary LCA application in children shoes

Softwares developed in other countries could appoint false results

- "Development of a national LCA database for supporting environmentally sound development of Hungarian enterprises"
- Bay Zoltán Foundation for Applied Research
 University of Miskolc
- Economic Competitiveness Operative Program (GVOP)
 Finance of the project:
 - 75% EU,
 - 25% Hungarian government

Developing an LCA software in Hungary for a more sustainable production

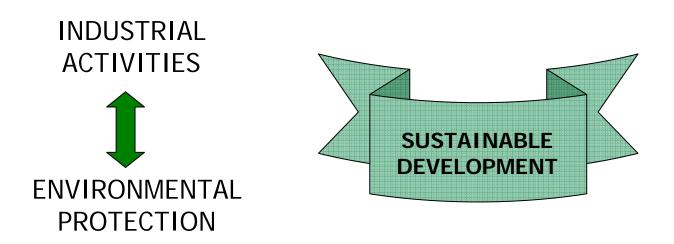
1.8%

Results in international research (SimaPro, GaBi)

Consideration of Hungarian conditions

Objectives

On-line database
 Focusing to


 Waste management
 Energy sector

 normalisation data ??? To use in education and research

TARGET AUDENCE

Environmental conscious customerEnvironmental conscious producer

PROCEDURE OF THE RESEARCH

- Estimating domestic energy-sector
- Data collection
- Determining system boundaries
- Function of production system
- Life cycle inventory

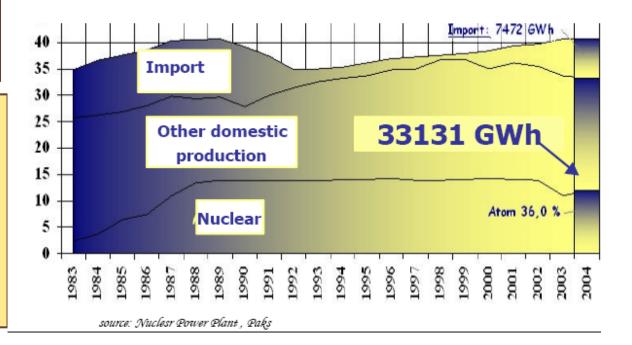
	Transportation
ctor	 Road transport
	-Railway
S	-Air
	•Waterway
	•Hydraulic
	Transport kilometre, materials

CLASSIFICATION OF HUNGARIAN POWER PLANTS:

- Nuclear Power Plants
- Coal fired power plants
- Natural gas- and oil fired power stations
- Natural gas burning power plants (peak-load plants)
- Wind energy power plants
- Incinerators
 - Biomass burning power plants

Input:

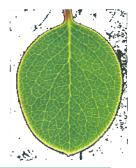
- Fuel elements
- Adsorbent rod
- Saline solutions for regeneration of ion –exchange resins
- Condenser water
- Chemicals, greasing materials


Output:

- Electricity, heat
- Nuclear wastes
- Condenser water
- Spent oils
- Noise and vibration

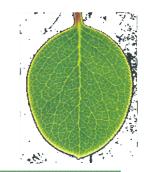
Total capacity: **1729 MW**

Paricipation from Hungarian electricity production: 39,1 %


Hungarian electricity production

Radionuclide	<i>Paks</i> [GBqGW _e ⁻¹ év ⁻¹]	<i>PWR</i> [GBqGW _e ⁻¹ év ⁻¹]								
UNIVERSITAS MISKOLCINENSIS	2003	1995-1997								
Emissions to air										
Total aerosol	4,4 x 10 ⁰	1,3 x 10 ⁻¹								
¹³¹ lodine equivalence	2,6 x 10 ²	1,7 x 10 ⁻¹								
Total inert gas	3,1 x 10 ⁵	1,3 x 10 ⁴								
Total tritium	5,0 x 10 ³	2,4 x 10 ³								
Total radiocarbon	4,3 x 10 ²	2,2 x 10 ^{2***}								
Fluent emissions										
Corrosive and cleavageproduct	5,8 x 10 ⁻¹	8,1 x 10 ⁰								
Tritium	1,0 x 10 ⁴	1,9 x 10 ⁴								

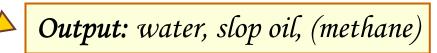
COAL BURNING POWER PLANTS

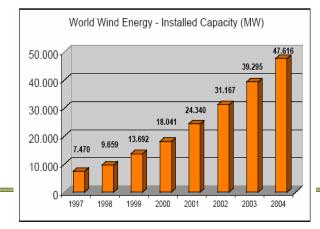

Input:

- Fuel : black coal, brown coal, lignite
- Industrial water
- Lime
- Ammonia or methane
- Electric energy
- Subsituation of the used up ion exchange resin
- lubricants

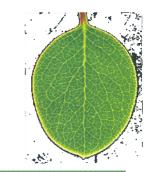
Output:

- Slag
- Dust-ash
- Gypsum
- Used up ion-exchange resin
- heat




- Natural gas firing: peak load plant
- Hydroelectric power stations (hidroaccumualtion plants, hidroaccumlationless plants)
- Incinerator
- Biomass burning plants
 - Silvicultural and woodworking waste
 - Secondary products and wastes of traditional agricultural corps
 - Cultivated plants with the aim of energetic
 - Secondary biomass
 - biogas

Input: water, oil


	Capacity (kW)	Date of commissioning	Produced electricity (kWh)	Avoided emissions		
Wind power plants				CO ₂ (t)	NO _x (kg)	SO _x (kg)
Inota power plant	250	2000	1013840	983,4	740	1500
Kulcs power plant	600	2001	3858456	3693	2779	5635
Monosszolnoki power plant	2x600	2002.12.20-2004.12.31.	1894720 (hours run:12494) 1912730 (hours run :12312)	3693	2779	5635
Mosonmagyaróvári power plant	2x600	2003.07.01-200412.3	1448234 (hours run:10629) 1456215 (hours run:10699)	2817	2120	4299

NEXT STEPS

- Parameters and trends of Hungarian energy-sector
- *input output analyses of energy production*
- Developing normalization data regarding to energy sector
- Parameters and trends of waste management
- Waste management systems and specific processes
- Creating normalization data regarding to waste-management sector
- Life cycle assessment for energy and waste systems
- Web development, software development

Thank you for your attention!

