
Key Environmental Performance Indicators (KEPIs): A New Approach to Environmental Assessment

Markus Stutz, Pranshu Singhal, Markus Terho, Salla Ahonen, Gareth Rice, Hans van der Wel

lotorola General Business Information, KEPI Mobile Phones, Nov. 2005

Life Cycle Assessments

Objective

To develop a simple approach

- for assessing the environmental impacts of mobile phones
- which concentrates only on a few key indicators
 - that are faster and easier to measure than traditional life cycle inventory data
 - that can be used to simulate and evaluate the environmental impacts of a product during its life cycle
- which assists in initial stages of product development
 - by identifying those stages in a product life cycle that have the most crucial effect on the environment

Wishlist

The approach should:

- Provide clearcut results
- Have low data requirements
- Require little calculation time
- Account for physical & chemical characteristics
- Require no interpolation from impacts

Key Environmental Performance Indicators (KEPIs)

- KEPIs are physical and chemical parameters of components of the mobile phone
- These parameters indirectly account for the environmental impacts of the phone
- They are simply to evaluate
- They can be used for
 - Eco-design
 - Benchmarking

Desirable Characteristics of KEPIs

- Independent of each other and collectively account for most of the life cycle impacts
- Scientific base
- Easy to use
- Reliable
- Extendable to other electronic products
- Applicable in all regions

lotorola General Business Information, KEPI Mobile Phones, Nov. 2005

Approach

- **LCA Perspective**
- Identify environmentally relevant components and significant materials by
 - Analyses of results of LCAs conducted by Motorola, Nokia, Panasonic & Philips
 - New Eco-Indicator 99 analyses of several mobile phones

- Legal Perspective
- Determine causes of embedded toxicity of the phone and its component by
 - –Using Green Design Advisor (GDA) tool of Motorola

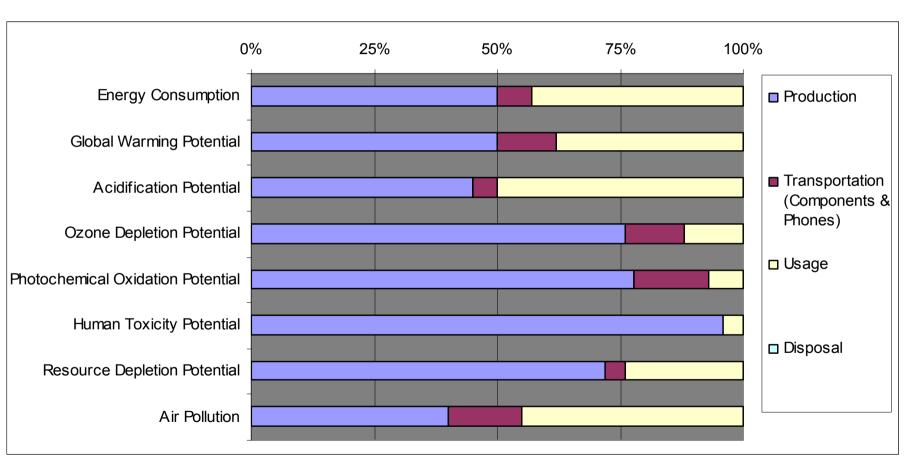
LCA Impact Categories Analysed (LCA Perspective)

- Energy Consumption
- Global Warming Potential (GWP)
- **Acidification Potential**
- **Ozone Depletion Potential (ODP)**
- Photochemical Oxidant Potential (POCP)
- Human Toxicity Potential (HTP)
- Resource Depletion Potential (RDP)
- **Air Pollution**
- Eco-Indicator 99

lotorola General Business Information, KEPI Mobile Phones, Nov. 2005

Embedded Toxicity Assessment by GDA (Legal Perspective)

Identification of


- components with most embedded toxicity
- materials in components responsible for embedded toxicity

GDA accounts "Toxicity Index" based on

- hazardous substance legislation in Europe
- standards of telecom customers

Environmental Impact Distribution for Mobile Phones

otorola General Business Information, KEPI Mobile Phones, Nov. 2005

Main Causes of Environmental Impacts

Production Phase

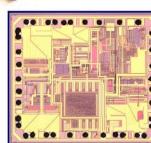
- Environmentally relevant components
 - PWBs, ICs, LCD, Solder
- Environmentally significant materials
 - Gold, Copper, Bromine
- Transportation Phase
 - Air transport of components
- Usage Phase
 - Standby power consumption of charger

Printed Wiring Board

Impact distribution

- Raw Material Acquisition ~ 65%
 - Main contributor: Gold in surface finishes; partially Copper
- Manufacturing ~ 35%
 - Dependent on Surface Area and Number of Layers
- Indicators
 - Amount of Gold
 - Total Area = Surface Area x Number of Layers

Integrated Circuits



Impact distribution

- Raw Material Acquisition ~ 35%
 - Main contributor: Gold in substrate and wires of Package
- Manufacturing ~ 65%
 - Impacts proportional to Surface Area of Fabricated Die & Number of Mask Steps

Indicators

- Amount of Gold
- Areas of Fabricated Dies (for ICs with similar number of mask steps)

Liquid Crystal Display

Impact distribution

- Raw Material Acquisition ~ 10%
 - Mainly contributor: Glass
- Manufacturing ~ 90%
 - Impacts proportional to Surface Area
- Indicator
 - Surface Area of LCD

lotorola General Business Information, KEPI Mobile Phones, Nov. 2005

Proposed KEPIs

Production Phase	Transportation Phase	Use Phase
 Amount of Gold Area of PWB x No. of Layers Area of Fabricated Dies Amount of Bromine Area of LCD Amount of Solder Paste Amount of Copper in Charger and its Cables 	 Number of Components in the Phone 	 Standby Power Consumption of Charger

otorola General Business Information, KEPI Mobile Phones, Nov. 2005

Test of KEPIs

- LCAs of a Notebook PC and Desktop PC by a Japanese Corp.
- LCAs identify that Notebook PC has lower environmental impacts
- Results obtained by using KEPIs are in conformity with LCA results
 - Three days for data gathering and assessment

Summary & Outlook

Accomplishments:

- Developed a simple approach based on KEPIs
- Tested KEPIs in a first case study
- Next steps:
 - Discuss approach and results within ongoing EuP discussion
 - Carry out case studies
 - Further develop approach in EPIC-ICT project
 - IPP case study

Acknowledgment

Pranshu Singhal

- Conducted study, wrote report & presentation

LCA Practitioner Group

- Markus Terho, Salla Ahonen, Nokia
- Gareth Rice, Pansonic
- Hans van der Wel, Philips
- Defined goals and scope, funded study, supported
 Pranshu
- Thank you!

Thank you!

lotorola General Business Information, KEPI Mobile Phones, Nov. 2005

