

EHS FIRST

Implementing Life Cycle Thinking in Industry: Challenges and Opportunities on the Path to Sustainability

Gerald Rebitzer, Paola Kistler, Kurt Buxmann

LCM 2005, Barcelona, September 5-7, 2005

Alcan's Global Presence

(December 31, 2004)

70'000 employees 510 facilities in 55 countries



Alcan's Business Groups

Engineered Products

12,000 employees in 36 countries – 136 facilities

Products

- Cable, rod and strip
- Hard and soft extruded alloys, large extrusions
- Forged and die-cast aluminum
- Brazing sheet
- Composite materials
- Aluminum safety components and structures

Markets

- Mass transportation and automotive
- Aerospace and marine
- Building construction and display
- Electricity transmission
- Wind-power generation
- Recreation and leisure

Highlights

- World's second largest supplier of aluminum aerospace products
 - #1 in Europe
- Europe's #1 supplier of large extrusions
- Leader in composite materials technology
- Full range of products and technical solutions for aerospace and transportation applications

34,000 employees in 27 countries – 179 facilities

Products

 Transformation of a wide range of flexible and rigid materials (plastics, engineered film, aluminum, paper, paperboard) into customer branded products

Markets

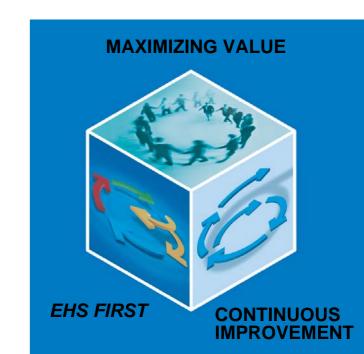
- Food
- Beauty and personal care
- Pharmaceutical and medical
- Tobacco

Highlights

- World-leading positions in major business sectors:
 - #1 in food flexible, pharmaceutical and cosmetics
 - #2 in tobacco packaging
- Improved ability to serve multinational customers through size and scale

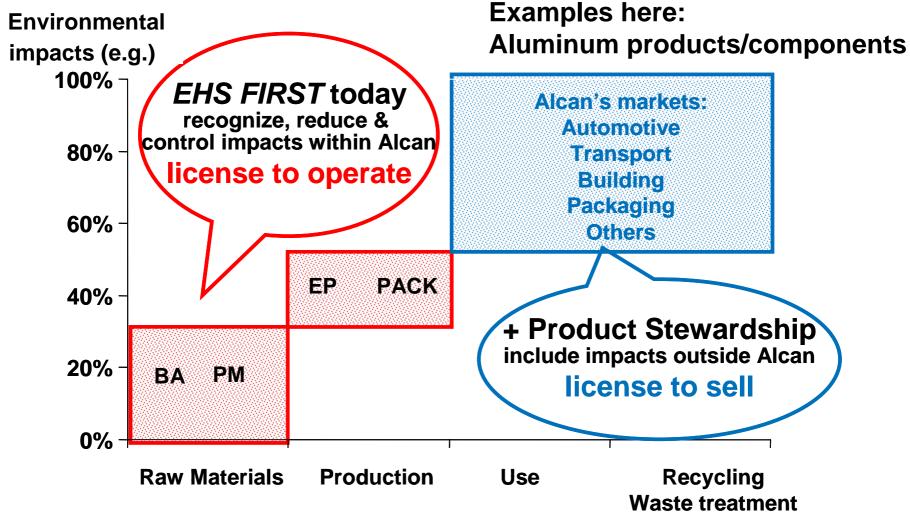
Alcan Integrated Management System (AIMS™)

Based on three pillars Maximizing Value – *EHS FIRST* – Continuous Improvement


- Maximizing Value Governing Objective
 - Maximizing shareholder value, whereby contributing to create social value, environmental value and broader economic value

EHS FIRST

- Articulates Alcan's vision of EHS excellence
- Build on common foundation (standardized EHS requirements) for achieving world-class EHS performance at all sites
- Mandatory requirements for all site to be certified according to ISO 14001 and OHSAS 18001 across all business groups


Continuous Improvement

 Alcan's tool box: Lean Manufacturing – Six Sigma

© 2005 ALCAN INC. September 2005

Engineered Products and Packaging are in the Drivers Seat

Top Management Commitment

At Alcan, we are *Taking the Next Step* by focusing our Corporate Sustainability framework on "doing more good". Whether it's through the design and application of innovative products or by building long-term partnerships through our stakeholder engagement efforts, we are working to integrate sustainability into all aspects of our business.

Travis Engen, CEO of Alcan, Introduction Alcan Sustainability Report 2004

Product Stewardship at Alcan

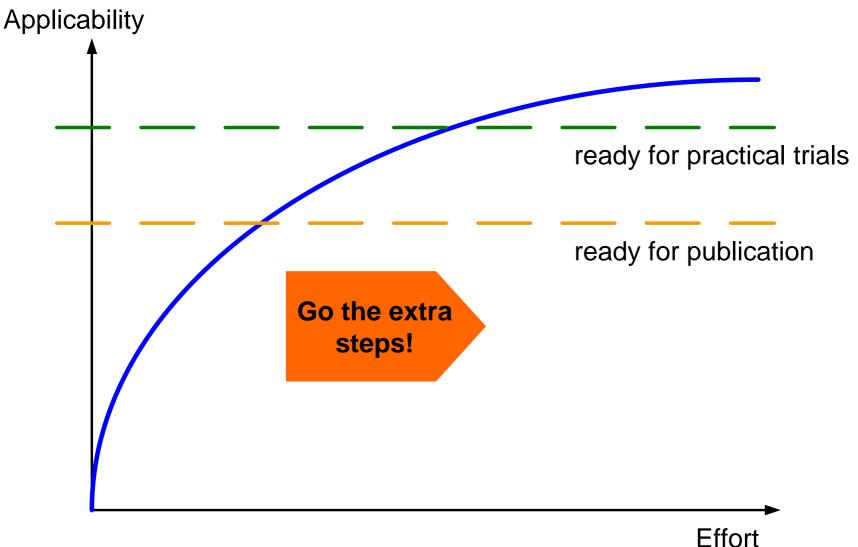
Management of the sustainability aspects of products throughout their life cycles

- Equivalent to life cycle management, but different terminology
 - less confusion with other uses of term "life cycle management"
 - the perception of "life cycle management system" is avoided
 → no need/interest for 'another" (new) management system
- Based on Alcan's Sustainability Framework, which includes stakeholder perspectives and a broad range of values
 - Environmental aspects LCA as essential element!
 - Economic aspects life cycle costing as an element
 - Social issues, including health and safety
- Crosscutting role, addressing e.g.
 - R&D
 - Sales and Marketing
 - Purchasing
 - EHS

Challenges for Implementation:The Process

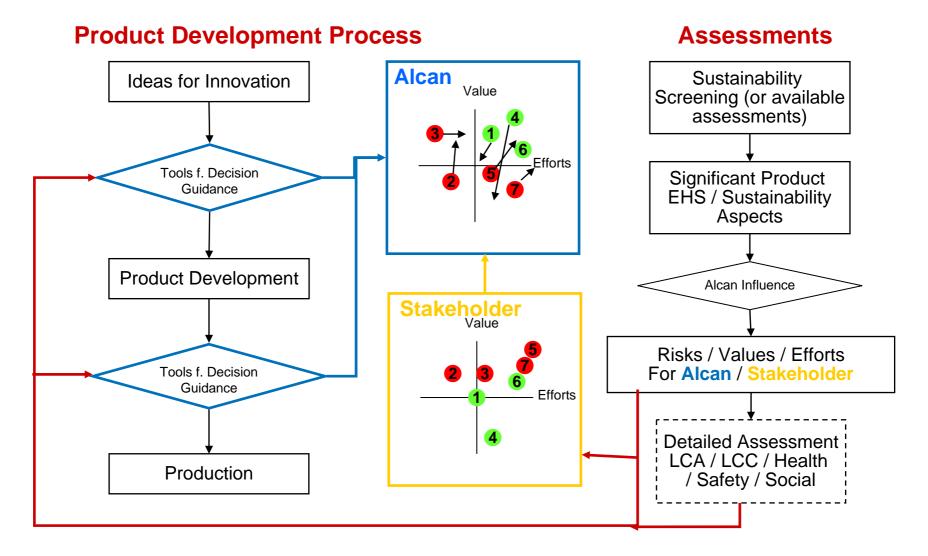
- How to create internal awareness and understanding, specifically for R&D, sales and marketing, purchasing?
- How can life cycle approaches be embedded in the business processes?
 - → life cycle approaches MUST bring added value into the existing functions and processes
- From projects to processes
 (one time studies vs. continuous application)

Challenges for Implementation: Tools and Methods

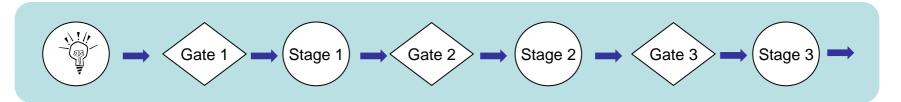


- How can existing tools be used effectively?
 - methods and models are available, further sophistication of less priority
 - research should focus on how tools can be used
- Assessment of social aspects
- Focus not only on impacts, but also on opportunities

Role of Scientific Community Development of tools and methods



🕦 Example: Product Stewardship in R&D 🔏


What can we influence? What about values, risks, efforts?

Product Stewardship within the Stage Gate Process of R&D

"Ideas stage"

Checklist: 5 to 10 standard questions

all projects

"Proof of concept"

Sustainability Screening (where appropriate)

depending on checklist result

"Product & Process Definition"

> Simple LCA and/or LCC calculations (where appropriate)

depending on screening result

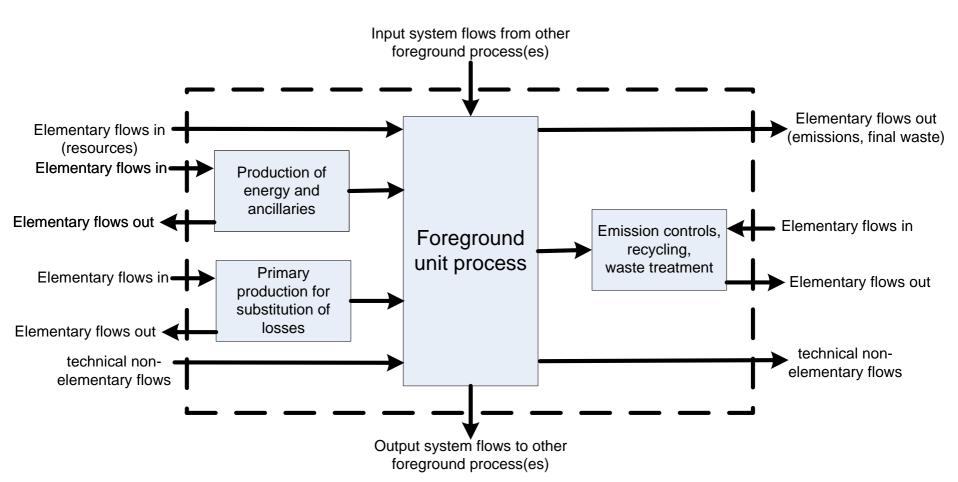
"Transfer"

Specific Product
Stewardship
support
(such as
manufacturing,
sales & marketing,
purchasing, EHS)

Available Tools and Efforts

The right tool at the right place

- Checklists (qualitative)
 - Simple questions to identify if there could be risks and/or opportunities
 - effort: about 15 minutes
- Sustainability Screening (qualitative)
 - Matrix of life cycle phases and impacts
 - effort: about 1 to 8 hours (depending on complexity, options)
- Simple life cycle assessments and life cycle costing analyses (quantitative calculations)
 - Calculation of environmental impacts and/or life cycle costs
 - effort: 0.5 to 5 days (depending on complexity, options, comparisons on existing/competing solutions)


Workshop with Business Functions Example: Sustainability Screening

	EHS FIRST													
	Environment				Socia			cial	ial			Economic		
	Energy consumption (fuel, gas, electricity)	Water consumption	Discharges (Air / Ground / Water)	Waste/oute of disposal	Safety	Health (indogrexposur, noise, ergonomics, vibration)	Social differentiation	Major risks (explosion_fire:leak)	Impact on community	Threats or risks in public perception	Raw material's availability	Assets needed	Market differentiation	
Raw Materials	x						х				х			
Production	Х	Х	х	Х	х	х	Х	Х	х	х		х		
Distribution	х													
Use customer	х	х	х	х	х	х	х			х				
Use				х	х					х			х	
End of life				х						х			х	

Extension of Foreground Processes w/ Background Data and Models

Benefits of Modular LCA in Regards to Applicability

- Usability of models and data for both LCA and site-oriented environmental management
- Minimization of effort for assembling and modifying product system models
- Facilitating the interpretation of the results at different levels (process, site, supply chain, product, etc.)
- Aligning environmental impacts and points of leverage (influence → what can be controlled at which level)

- The real challenge are not the tools, methods, models, but their application
 - → more research on application is needed
- Focus should be on how existing tools can be used/modified to be used in business processes
- Orientation for and adaptation to decision-support is essential (no new questions, but rather a way of better answering existing questions)
- SMEs and multinationals are often not that different
- The existence of subjective value choices, esp. for social aspects, should be accepted (rather than searching for the 'perfect' evaluation/weighting)

LCM 2007 Conference in Zürich, Switzerland

Date for conference fixed to:

August 27-29, 2007

→ reserve it in your agenda