GaBi 4 Product Portfolio

- Fulfilling requirements of industry -

Julia Pflieger

University of Stuttgart, IKP - Department Life Cycle Engineering www.ikp-gabi.uni-stuttgart.de / www.gabi-software.com

LCA in Industry: Challenges and Approaches to Make it more Practical Session: A toolbox for "quick and sound" LCA

27th LCA Discussion Forum, Zürich, November 17th, 2005

LCA in industry

General requirements on tools for LCA application

Practitioners in industry:

- Environmental experts
- Product / process designer
- Marketing / Communication

... and therefore different levels of application:

- ▶ Difference in resource and time availability for conducting an LCA or integrating LCA into product development
- ▶ Difference in knowledge and experience on LCA
- Difference in use of LCA results
- ⇒ Variety of different requirements on scope, functionality and complexity of LCA tools exists!

LCA in industry

Overview on tools for LCA application

27th LCA Discussion Forum Zürich, November 17th, 2005

Design for Environment

GaBi 4 – interactive report, publisher and reader

Requirements from industry:

Flexible and individual application and (internal) communication of LCA results in product design

Dissemination of LCA results:

- ► Giving non LCA software users access to LCA results
- Quick, easy and transparent communication of project results
- ► Possibility for the product designer to create own scenarios by parameter variation
- ► Nearly no LCA software knowledge needed to use and interpret the LCA results

Reporting on LCA results:

- ► Creation of interactive (= parameterised) reports
- ► Faster balance analysis by defining and applying report templates
- ► Adaptation of reports on the basis of scenario analysis and parameter variation
- ► No LCA software knowledge needed to understand and interactively change the LCA system

Design for Environment

GaBi 4 – interactive report, publisher and reader

GaBi 4 i-report

- Set-up of parameterised product-specific LCA models
- Creation of interactive reports based on parameterised models
- ► Flexible parameter variation allows online adaptation of interactive reports
- Definition of report templates, Export of reports to .rtf (MS Word)

GaBi 4 publisher

▶ Disseminate GaBi 4 model files and GaBi 4 i-reports to clients using GaBi 4 reader

GaBi 4 reader

- View and application of interactive reports and GaBi 4 models
- ► Change parameters in exported modules for scenario simulation, product selection etc.

LCA for beginners

GaBi lite

Requirements from industry:

Consideration of requirements on the handling and user guidance of beginners

- ► Easy to use LCA software tool
- ► Support of resource and time efficient LCA studies
- ► User guidance on application and modelling of a product's life cycle
- ► Simple modelling and analysis of products and processes without loss in data quality
- ▶ No need for comprehensive expert knowledge in complex LCA modelling
- ► User guidance on analysis and presentation of results
- ► Compatible and upgradeable to expert LCA software

LCA for beginners

🔼 Use phase

Cancel

Calculate balance results

27th LCA Discussion Forum Zürich, November 17th, 2005

Design for Recycling / Disassembly / Compliance

GaBi DfX

Requirements from industry:

Consideration of requirements on the environmental assessment of complex topics and products, e.g. automobiles, information and communication technologies

- ► Integration into existing internal design and documentation tools
- ► Support in compliance with directives and laws, e.g. identification of recycling quotas, tracing of hazardous substances, ...
- ► Definition of the products life cycle e.g. modelling of product structure, identification of material composition, scenario analysis for End-of-Life, ...
- Support of recycling orientated product design
 e.g. description and classification of materials, description of the recoverability processes,
 calculation of road vehicles' recyclability and recoverability (ISO 22628), ...
- Analysis of disassembly processes based on LCA model e.g. modelling of joining techniques, description of the sequence of disassembly, definition of disassembly precedence, ...

Design for Recycling / Disassembly / Compliance

GaBi DfX

Disassembling costs

Recycling (EoL) chassis

Constituent

Brake [Parts]

Steering [Parts]

Light alloys, cast and wrought alloys

[ransverse control arm (bottom) [Parts] 0

[ransverse control arm (top) [Parts]

Shock absorber [Metal parts]

Wheel [Automotive assemblies]

7.5€

Amount Unit

1,745

10

kg

kg

- Design for Compliance DfC
- Design for Environment DfE

🥏 🖫 🗗 ?

ISO rates | Recycling |

Amount

84,5

84.5

20

44,951

33.202

13,202

26,145

0,6

1,435

0.9177

0,115

0,4023

18.933

0.93332

0,04

0,04

0,2

0,8

0.345

0,345

1,6

kg

kg

2 ? 1 Information | Connection diagram | VF

Steel and iron materials

Copper alloys

Duromers

Polymeric materials

Process polymers

Other materials

Adhesives, sealants

Others (unspecified)

Fuels and auxiliary means

Electric/Electronics

Electronics

Brake fluid

Lubricants

Steel, cast steel, sintered steel

Aluminium and aluminium alloys

Magnesium and magnesium alloys

Elastomers/elastomeric compounds

Modified organic natural materials

Nonferrous heavy metals, cast and wrought alloys

Light alloys, cast and wrought allo

Design for Disassembly – DfD

27th LCA Discussion Forum Zürich, November 17th, 2005

Last change: System, 02.08.2005 10:39:36

A Chassis [Product model] -- DB Product model

Chassis

Production chassis

Object Edit View Help

Front axle