27th LCA Discussion Forum, 17 November 2005

ecosolvent: A tool for waste-solvent management in chemical industry

<u>Christian Capello</u>, Stefanie Hellweg,

Christina Seyler, Konrad Hungerbühler

www.sust-chem.ethz.ch

Safety and Environmental Technology Group

Contents

- Introduction to the waste-solvent management in Swiss chemical industry
- Project goals
- Inventory models
- Uncertainty quantification
- The ecosolvent tool
- Case Study application
- Final conclusions

Waste solvent in Swiss chemical industry

- Swiss chemical industry operates mainly in the field of pharmaceutical and specialty chemicals (>90% of the total turnover)
- High consumption of organic solvents (~250'000 tonnes of fresh solvents / year)
- 45 organic solvents were identified to be important (industry survey)
- Waste-solvent management is controlled by economic and logistic factors
- So far, no instruments are available for quantifying the environmental impact of waste-solvent treatment

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Project goals

- Development of an easy usable tool for the comparative environmental assessment of wastesolvent treatment technologies for specific, userdefined waste-solvent mixtures
- Environmental assessment using the LCA methodology
- Close collaboration with industry (data and requirements)

Model overview

- Distillation Avoidance of petrochemical solvent production
- Both treatment options enable a reduction of the demand of non-renewable resources

LCI-models incineration: Multi-input allocation models

- Allocation:
 - Elemental composition (e.g. NaOH consumption)
 - Net calorific value (e.g.process steam as co-product)
 - Waste-solvent mass (e.g.electricity consumption)
- Models:
 - Waste-solvent incineration plant (capacity 35'000 t/a) (Seyler et al. 2005, J. of Cleaner Production 13, 1211-1224)
 - Incineration in cement kilns (Swiss average, 8 plants) (Seyler et al. 2004, Int. J. of LCA 10 (2), 120-130)
- Input information needed:
 - Elemental waste-solvent composition and water content

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LCI-model wastewater treatment plant: Multi-input allocation model

- Currently:
 - Allocation based on TOC-content
 - All consumption and emission factors are based on industry data
 - Differentiation between well degradable alcohols (e.g. methanol and ethanol) and other solvents.
- Planned improvement:
 - More comprehensive model, including various technologies and allocations (A. Köhler, Dissertation ETH)

Safety and Environmental Technology Group

LCI-model distillation: A statistical approach

- Problem: Every distillation process is unique (waste composition, distillate purity, technology)
- Solution: Statistical analysis of 150 industrial wastesolvent distillations
- Results: Generic data ranges for each LCI parameter (Capello et al. 2005, ES&T 39 (15),5885-5892)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LCI-model distillation: Case 1

Generic data ranges I: Data ranges based on full sample

Swiss Federal Institute of Technology Zurich

LCI-model distillation: Case 2

Generic data ranges II: Data ranges based on sub-samples

LCI-model distillation: Model overview

Required Information

- •Waste solvent composition
- Recovered solvent

 Distillation technology (batch/continuous)

Additional Information

- Solvent recovery
- Steam consumption
- » Nitrogen consumption
- > Amount of outlet air
- Ancillaries (purpose)
 - > pH regulation
 - > Entrainer (azeotrop)
 - Cleaning agents

(Case 1)

Generic data ranges II

(Case 2)

www.sust-chem.ethz.ch

•User defined values for

- Solvent recovery
- Steam consumption
- Electricity consumption
- Nitrogen consumption
- Ancillary consumption
- Amount of outlet air
- Amount of wastewater
- Amount of cooling water

Precise user data

(Case 3)

Safety and Environmental Technolo<mark>gy Grou</mark>p

Methods of uncertainty quantification

- Method 1: "Bounding analysis"
 - Total minimum / maximum values based on minimum / maximum values of all consumption and emission factors (incineration) and 95% interval (LCIparameter distillation)
- Method 2: Stochastic modelling (Monte Carlo)
 - Fitted probability functions for all model parameters (incineration and distillation)
 - Uncertainty of the background-inventories (ecoinvent database or generic uncertainty factors)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The ecosolvent tool: Schematic overview

Case study 1: Ethyl acetate mixture

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich www.sust-chem.ethz.ch

Safety and Environmental Technology Group

Case study 1: Ethyl acetate mixture

Distillation is the environmentally superior treatment option

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich www.sust-chem.ethz.ch

Safety and Environmental Technology Group

Case study 2: Acetic acid / water mixture

Summary & Conclusions

- The ecosolvent tool enables to calculate the environmental impact of thermal treatment as well as recovery of specific, user-defined waste solvents
- All models are based on industry data
- Only few input information is needed (waste solvent composition and solvent to be recovered)
- Increasing completeness of information leads to more accurate results
- Due to its flexibility in terms of information needed, the ecosolvent tool can be used for the environmental assessment
 - of already operating processes (retrofit) as well as
 - in the stage of process design

Software release

- Scheduled software release is Juli 2006
- Information available under http://www.sust-chem.ethz.ch

Acknowledgment

- Financial support:
 - Swiss Federal Office of Energy (Project No. 100065)
- Financial support and data support:
 - Ciba Specialty Chemicals AG
 - Ems-Dottikon AG
 - Lonza Group Ltd.
 - Novartis Pharma AG
 - Hoffmann-La Roche AG
 - Sigfried Ltd.
 - Valorec Services AG

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thank you for your attention!

- Further information:
 - christian.capello@chem.ethz.ch
 - http://www.sust-chem.ethz.ch/research/lifecycle/solvents.html
- References:
 - Capello, C, Hellweg, S, Badertscher B, Hungerbühler, K (2005): Lifecycle Inventory of Waste Solvent Distillation: Statistical Analysis of Empirical Data, ES&T 39 (15), 5885-5892
 - Seyler, C, Hofstetter, T-B, Hungerbühler, K (2005): Life-Cycle Inventory for Thermal Treatment of Waste Solvent from Chemical Industry: A Multi-Input Allocation Model, J. of Cleaner Production 13, 1211-1224
 - Seyler, C, Hellweg, S, Monteil, M, Hungerbühler, K (2004): Life-Cycle Inventory for of Waste Solvent as Fuel Substitute in the Cement Industry: A Multi-Input Allocation Model, Int. J. of LCA, 10 (2), 120-130

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The 45 solvents included in the ecosolvent tool

Alcohols	Aliphatic hydrocarbons	Isopropyl acetate
Amyl alcohol	Heptane	Methyl acetate
Benzyl alcohol	Hexane	Methyl formate
Butanol (-1)	Isohexane	Ethers and glycol ethers
Butanol (-2)	Pentane	Butylene glycol
Butanol (-Iso)	Carbon Acids	Diethyl ether
Ethanol	Acetic acid	Dioxane
Methanol	Formic acid	Methyl-tert. butyl ether
Pentanol	Cycloaliphatic hydrocarb.	Tetrahydrofurane
Propanol (-1)	Cyclohexane	Ketones
Propanol (-2)	Methylcyclohexane	Acetone
Aldehydes	Chlorinated hydrocarb.	Cyclohexanone
Benzaldehyde	Dichloromethane	Methyl ethyl ketone
Formaldehyde	Monochlorbenzene	Methyl isobutyl ketone
Propionaldehyde	Esters	Miscellaneous Solvents
Aromatic hydrocarbons	Butyl acetate	Acetic Anhydride
Ethyl benzene	Ethyl acetate	Acetonitrile
Toluene	Isoamyl acetate	Dimethylformamide
Xylene	Isobutyl acetate	

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

www.sust-chem.ethz.ch

Environmental **Technology Group**

LCIA methods included in the ecosolvent tool

- Aggregated scores:
 - Eco-Indicator 99
 - Method of Ecological Scarcity (UBP'97)
 - Cumulative Energy Demand
- Midpoints:
 - Global Warming Potential
 - Respiratory Inorganics, Climate Change, Fossil Fuels
 - CML Fresh Water Aquatic Toxicity, extended with a characterization factor for TOC from chemical industry
- Elementary flows:

