

ENVIRONMENTAL DECISION MAKING IN SUSTAINABLE CONSUMPTION: ASSESSMENT OF KEY DECISIONS AND CASE STUDIES

Josef.Kaenzig@epfl.ch Olivier.Jolliet@epfl.ch

Industrial Ecology - Life Cycle Systems, Swiss Federal Institute of Technology Lausanne (EPFL)

Extracts from an ongoing study for the Swiss Agency for the Environment, Forests and Landscape (SAEFL):

- 1. Assess **the environmental impact per capita** with life-cycle approaches
- 2. Analyze and **identify key factors**, **decisions and actors** in regard to sustainable consumption
- 3. Elaborate **sustainable consumption patterns** presenting important benefits for the environment

Functional unit: Quantity Q of products needed to fulfill the demand of Swiss consumers per year.

Consumption domains	Attribution of particular elements		
LC: Life cycle	Transport of goods and persons	Household appliances	Heating
Housing LC building Living 	Transport of construction materials and waste	Use stage (electricity,)	Private housing
Private mobilityLC vehicleLC infrastructure	Private mobility (commuting included)		
Consumption goods and services • LC other goods	Up to retail store	Production and end of life	Offices and production plants
Nutrition LC food 	Transport of food an animal feed		
Public consumption and services	Mobility at work		Public buildings

Comparisons of different studies

E2 vectors (Energy & Expenses /capita)

Key factors: Consumer behaviour

Domain	Key factors & decisions	Key actors
Housing including electricity (Use stage!)	 Thermal quality (isolation) Living space (m²/capita) Type of housing Consumer behaviour (°C, etc.) 	 Builder-owner, Architect Government (regulation, financial incentives) Buyer - Consumer
Private mobility (Use stage!)	 Distances (km) Mode of transport and occupancy Motor technology 	 Government (regulation, financial incentives) Buyer - Consumer
Consumer goods and services (Whole life cycle)	 Energy consumption and material use etc. Useful time Eco-design / Label Recycling rate 	 Government (regulation, financial incentives) Producer Buyer - Consumer
Nutrition (Production!)	 Animal or cereal production Origin, season (greenhouse, air transport etc.) 	 Government (regulation, financial incentives) Producer Buyer - Consumer
Public consumption and services	 Number of employees 	CompaniesGovernment

House built according to the standard MINERGIE. Architect: atelier Pont12, F. Jolliet. Important environmental benefits. Problem: ~5% higher capital costs for MINERGIE.

Advantages:

- Energy savings → Less dependent on energy prize
- More comfort: Noise protection, no disturbing flows of air etc.
- Isolation: 20 cm
- Double-glazed windows
- Heat recuperation
- Gas heating
- Solar thermal collector for hot water

Life Cycle Assessment housing: Energy (Average vs. conventional vs. low energy)

 \rightarrow Energy use during the use phase is more important than energy use for materials and construction. Materials: No significant differences.

Life Cycle Assessment housing: Ecological scarcity (Average vs. conventional vs. low energy)

 \rightarrow Impact due to use stage is much more important than impact due to materials and construction.

Life Cycle Assessment housing: Human health (Average vs. conventional vs. low energy)

 \rightarrow The impact of housing on human health is quite important.

Life Cycle Assessment housing: Ecosystem quality (Average vs. conventional vs. low energy)

- \rightarrow Impact on ecosystem quality rather small.
- \rightarrow Impact due to wastewater dominates.

Impact 2002+

Life Cycle Assessment housing: Climate change (Average vs. conventional vs. low energy)

 \rightarrow The use stage has the most important impact on climate change. The standard MINERGIE reduces the global warming potential of heating by 2!

Impact 2002+

Key factors	Dissipater	Ecologist
Heating (room	21-23°C	19-20°C day
temperature)	(24h/24h)	17°C night
Air condition	> 26-28°C	> 33°C
Quantity of warm water	Bath	Shower
Open windows	Hours	2-3 times a day 5 min.
Boiler (T. of warm water)	80°C	55°C
Valorisation of waste	No sorting	Sorting

 \rightarrow High potential for improvement ? !

Example: Passenger car

average distance per capita (Switzerland):

~9000 passenger-km/year

Key parameters:

- Distance!
- Gasoline consumption [litres/100km]
- Occupancy of the vehicle (e.g. 4 persons per car instead of only one person reduces impact per person almost by a factor 4)
- Behaviour of the driver (eco-drive => -12% of gasoline)
- Motor technology
- → High potential savings that are directly dependent on consumers behaviour.

Private mobility: Impact due to total passenger kilometres in Switzerland

→ Impact of passenger car use is dominant! (Noise is not included).
→ How to reduce impacts of private mobility?

Private mobility: Impacts of different modes of transport

Based on database ecoinvent 1.1

Non renewable primary energy [MJ/passenger-km]

 \rightarrow Factor of 6 difference between train and airplane as far as non renewable energy consumption is concerned. Occupancy is very important!

Consumer goods: Characteristics

Active products	 Refrigerator Dishwasher Washing mashing 	→ Buying efficient appliances	
	Washing machine		
	• Oven		
	Lighting		
Mobile products	Car part	\rightarrow Reduce weight	
		\rightarrow Lengthen the useful	
	 Jewellery 	time (e.g. through	
	 Sport goods 	maintenance or better	
Passive products	 Textiles (carpet, clothing,) Paper 	quanty	
		\rightarrow Recycling	
	 Perishable goods (cosmetic) 	→ Avoid losses	

EU energy labeling: Fridge class A+

Savings with an energy efficient refrigerator (class A+, volume: 230 litres, lifetime: 15 years).

→ Use stage is dominant as far as energy is concerned.

Energy savings / person-year with efficient household appliances A(+)

Cumulated savings with efficient household appliances (class A(+))

→ Savings: 5.5 GJ and 180 CHF per person and year.

Savings with efficient household appliances and renewable energy

 \rightarrow Save energy first and then invest in renewable energy!

Consumer goods: Useful time and costs of shoes

 \rightarrow The longer a passive product is used, the better.

5 recommendations for a more environmental friendly food consumption (adapted from Jungbluth, 1999 et 2004)

- Reduce meat consumption → less water consumption, less energy consumption, less land use, less photochemical pollution
- 2. Avoid food transported by air, choice of products implying short transport distances
- 3. Buy **seasonal products** (avoid greenhouses)
- 4. Buy regional products
- 5. Give a preference for products with **light packaging**

Concept of E2 vectors: Goedkoop M., 2001

Consumer's rose of decision (E2 vectors)

Scenarios of sustainable consumption

- Only half of the average meat consumption
- Efficient household appliances (class A(+))
- Public instead of personal transport (10'000km)
- Week-end Berlin by train instead of plane (2*860km)
- Low energy house
- Wind power for electricity
- Room temperature -2°C,

- Potential energy savings /person year with proposed scenarios: -57 GJ non renew. primary energy (-28%).
- High potential for reduction of the environmental impact.
- Money savings (thanks to energy savings e.g.) can be reinvested in sustainable products

(e.g. low energy house, renewable energy, ...).

- → Prioritizing of consumption patterns and alternatives that can make a significant difference.
- → Communication of sustainable consumption alternatives utilizing appealing images and positive terms.