Is it always clear what 'good quality' is? – Value choices in quality management

Short presentation at the 23. LCA discussion forum "Quality Issues in LCA Software, Projects and Peer Review" September 23th, 2004 at ETH Zurich, Switzerland

by Gabor Doka

Doka Life Cycle Assessments, Zurich df23@doka.ch

What is quality?

Do we all agree on quality characteristics and priority of these characteristics?

Probably yes, most of the time. But there are value-laden and controversial elements.

For example in system scoping:

Lean systems: E.g. inventorying well known and popular processes and effects (e.g. only air emissions of CO_2 , NO_x , SO_2 from fuel use)

Full systems: Assessing systems in depth, including 'far-background' processes, auxiliary materials and exotic pollutants.

Control vs. Curiosity

Lean system

- System parts and effects are well known and 'popular'.
 - Focus on 'known knowns' (WYKIWYG)
 - Quite predictable, usually unsurprising results.

Full system

- Effort on extensions to reduce unknowns.
- Gain of new knowledge.
- Surprises are possible.
- Hitherto unknown or unexpected effects could become detected as important.

Is complexity a good thing?

Lean system

- Reduced system complexity with low to moderate inventory workload
 - Streamlined system = many *intentional* data gaps

Full system

- Complex system with high inventory workload
- Data gaps minimised
- Often larger uncertainty in results

Closure vs. Completeness

Lean system

- Few or no data gaps (except the intended ones)
 - High risk of burden shifting (stakeholders replace the assessed burdens with the not-assessed ones)

Full system

- Some data gaps filled, many remain.
- Every result is always 'preliminary' as more data might be added.
- Precautionary principle of heeding every burden.
- Lowers the risk of burden shifting *
- * The major reason to assess life cycles in the first place

Lean vs. full systems

Every LCA system is inherently complex: How do we deal with that complexity?

- Do we cut down complexity by focussing on the well-known, 'popular' system parts?
- How can we know that the 'popular' system parts are the relevant ones for the assessed process?

Two 'archetypes' for these questions:

Conservative: favours lean systems and popular processes

Progressive: favours full systems, curious disposition

Conservative review outcomes

A Conservative reviewing a lean system LCA

- "complete" all of the few pre-set emissions are recorded
- "low uncertainty" because system complexity was reduced

A Conservative reviewing a full system LCA

- "incomplete" data gaps for a lot of emissions
- "high uncertainty" because system is complex and also unpopular or speculative effects are included

Progressive review outcomes

A Progressive reviewing a lean system LCA

- "incomplete" a lot of pollutants are intentionally missing
- "**results questionable**" for environmental decision making because burden shifting is possible \rightarrow higher "decision uncertainty"

A Progressive reviewing a full system LCA

- "as complete as possible" a lot of pollutants are heeded according to available sources
- "**results suitable**" because risk of burden shifting is lowered. Priority of avoiding data gaps/burden shifts over result value uncertainty.

Concluding remarks

- The foremost quality of LCA studies is that they try to create a **synoptic view** of the burden potential of the assessed processes
- The prime motivation for this synoptic effort is the **avoidance of burden shifting** from LCA-based decisions
- Intentionally cutting down this synoptic complexity might be a pragmatic short-cut, but clashes with the prime motivation
- Completeness produces complexity, which tends to lead to larger
 uncertainty and variability in result values (Min-Max ranges)
- Data gaps raise **"decision uncertainty"**, but without leading to any quantitative signals in the result and nothing to perceive.

Thank you for your attention

