Environmental Safety of Pesticides

Markus D. Müller, Thomas Poiger and Andrea Hauser, Plant Protection Chemistry, Federal Research Station, 8820 Wädenswil

19th Discussion Forum on Life Cycle Assessment, Zürich March 27, 2003

Pesticide use is tightly regulated in most countries because

- Pesticides are intentionally released to the environment
- designed to show considerable biological activity

Use is permitted only for specific purposes: defined crop-pest-time-dose-combinations evaluated and found safe

Legally speaking....

- "Registration is granted, if
- the product is sufficiently suited for the purpose intended for....
- does not give rise to significant adverse effects"

Aspects of Pesticide Safety

Exposure

- dermal contamination penetration
- inhalation

Toxicity

- acute
- subacute
- chronic
- mutagenicity
- reproduction
- metabolism in animals

Residues

- fate in plants
- residue analysis methods
- A.I. and metabolites
- residues in food

Environmental Fate

- hydrolysis
- photolysis
- degradation in soil and water
- mobility in soil
- volatility
- bioaccumulation

Ecotoxicity

- birds
- fish
- crustaceans
- algae
- aquatic plants
- earthworms
- soil microbes
- beneficial arthropods
- bees

Applicator Safety
Assessment

Consumer Safety
Assessment

Environmental Safety
Assessment

the assessment team is confronted with....

•an amazing complexity of environmental processes....

•and a "data-rich" situation....

Structured approach to reduce the complexity processes in soil: biodegradation, photolysis, sorption

- 1.1 laboratory studies using 14C-labeled compounds to provide
- complete mass balance (route)
- identification of metabolites (rates)
- mobility in soil of parent and metabolites
- 1.2 field studies giving information on
- dissipation of active compound and metabolites
- accumulation in soil
- lysimeter/field leaching study

2. processes in water and water-sediment systems:

- hydrolysis,
- · photolysis,
- behaviour in a water-sediment system

3. processes in air:

- evaporation from surfaces (soil, leaves)
- atmospheric lifetime

Degradation in soil: use of ¹⁴C-labeled compounds allows establishment of routes and rates (mass balances)

Decision Making Scheme and Tier-wise Approach for Fate in Soil

Example: fate of the herbicide metsulfuron-me in soil (selective herbicide in grain, approx. 10 g/ha)

Route of degradation of metsulfuron-me in soil: (data from published EU review)

Aerobic:

Mineralization after 100 days

32 % (phenyl, 112d, 1 soil) 11.4% (triazine, 90d, 1 soil) 10% (triazine amine, 1 soil) - 38% (65w)

Non-extractable residues

12 - 25% (phenyl, 98d, 3 soils) 17.6% (triazine, 90d, 1 soil) 6% (triazine amine, 1 soil) - 10% (65w)

Relevant metabolites above 10% of applied active substance: name and/or code

% of applied (range and maximum)

4 soils

IN-D5803: Ester Sulfonamide

max. 17% (4w), <4% (24w)

IN-D5119: Acic sulfonamide

<10% (16%, 24w, 1 soil)

IN-B5685: Phenylurea, max. 17% (14w)

IN-00581: Saccarin

max. 41% (8w), <33% (14w)

1 soil

IN-A4098: Triazine amine, max. 33% (12w)

IN-NC148: carbamoyl guanidine

max. 16% (12w), <3% (52w)

IN-B5067: O-desmethyl metsulfuron,

max. 11% (10d), <2% (52w)

Rate of metsulfuron-me

	4	stud	
	TOFV	STILL	HES.
o o i u	LOI Y	June	

DT50lab (20°C, aerobic)

DT90lab (20°C, aerobic)

DT50lab (10°C, aerobic)

DT50lab (20°C, anaerobic)

Metsulfuron

22°C, aerobic 23 - 29d (2 soils) 25°C, aerobic 20 - 51d (mean,

31.6d, 7 soils)

25°C, sterile 61 - 405d (7 soils)

Triazine amine

25°C, aerobic 210d (1 soil) Other metabolites: no DT50 value provided. Saccharin is persistent; ester sulfonamide is not persistent (DT50<< 1 month); O-desmethyl metsulfuron methyl and carbamoyl guanidine are

less persistent than saccharin.

22°C, aerobic 76 - 98d (2 soils)

25°C, aerobic 94 - 320d (2 soils)

25°C, sterile 203 - 1344d (7 soils)

no data

no data

Estimation of Predicted Environmental Concentrations (PECs) using generic environment/realistic worst case scenarios

PECsoil: use of models (PELMO) or simple first order degradation

PEC_{water} use of models drift estimation (Ganzelmeyer) leaching, run off

and comparison to ecotoxicity data of selected organisms

Typical dosis-effect curve in aquatic tests

Typical exposure period-response relationship in aquatic tests

Striking a balance:

- possible toxicity on non-target organisms expressed as effect concentrations (NOEC, EC₅₀)
- Initial and time-weighted average concentrations are compared to effect concentrations by a toxicity-exposure ratio TER
- TER > 100 are considered to be safe

Evaluation of effects on non-target-organisms: First Tier

Expression of Risk as Toxicity-Exposure Ratio (TER)

Higher tier is triggered by TER > 100

Effects of metsulfuron-me on aquatic organisms

Acute toxicity fish	LC ₅₀ (96 h) > 150 mg/l
Chronic toxicity fish	NOEC (21 d) 68 mg/l
Bioaccumulation fish	whole fish < 1 (low P _{ow} = -1.7 at pH)
Acute toxicity invertebrate	EC ₅₀ (48 h D. magna) > 150 mg/l
Chronic toxicity invertebrate	NOEC (21d, daphnids) 150 mg/l
Acute toxicity algae	EC ₅₀ (72 h S. capricorn.) 0.045 mg/l
Acute toxicity on aquatic plants	EC ₅₀ (L. gibba) 0.00036 mg/l
Acute toxicity on sediment	not required
dwelling organisms	

Estimation of PECwater with different scenarios

		ouffer zone 3 m buffer zone .0% drift) (1.0% drift)		5 m buffer zone (0.6% drift)		
days after max. concentrati on (after application)	(µg / L)	PEC _{sed} (μg / kg)	PEC _{sw} (µg / L)	PEC _{sed} (µg / kg)	PEC _{sw} (µg / L)	PEC _{sed} (µg / kg)
initial	0.200	0.174	0.050	0.044	0.030	0.026

Assuming a 3 m buffer zone:

Estimation TER for fish: 3.6 . 10⁵ Estimation TER for Lemna (aquatic plant): 0.9

note how the highly specific mode of action of the sulfonylurea herbicide is expressed in the corresponding TER values

Case Study:

Comparison of possible contamination of groundwater through application of asulam in spring or autumn

Asulam is used in pastures to control Rumex spp. at rates of 2.8 kg ai/ha

$$NH_2 \longrightarrow SO_2N = C - OCH_3$$

Asulam is weakly adsorbed and degraded with typical half lifes of 8 – 28 d.

Problem: Use of asulam in spring leads to contamination of honey via nectar Question: is a use in autumn (mid-october) safe? Answer: Modelling of PEC_{GW} using a numerical model (PELMO). Application in late spring

Frühlingsanwendung K_{OC} = 40, DT_{50} = 14d

Application in mid October:

Herbstanwendung K_{OC}= 40, DT₅₀ = 140

Note the difference in the PEC_{GW} due to increased net percolation of water in soil

Conclusions:

- The size and complexity of the data set for modern pesticides can be compared to that for new drugs
- The environmental safety of pesticides is a multi-disciplinary task involving chemists, environmental chemists and biologists
- •The foundation of data requirements is clearly defined, but the extrapolation to "real environment" calls for in depth expert knowledge
- •Pre-registration evaluation of environmental safety can profit from post-registration environmental monitoring.

Thank you for your attention!

