

Risk Assessments and Mass Balances

Andreas Huber, Environmental Safety and Exposure Assessments, Basel

How to Evaluate Environmental Exposure?

Potential uses of a compound

- Greenhouse vegetables, foliar
- In-furrow applications
- Broadcast application to paddy rice
- Seed treatment
- Application with drip irrigation
- Stem paintings
- etc.....

Is the compound safe under worst-case conditions?

Risk Assessment

What is the total exposure of environmental compartments associated with normal use of the compound?

The principle of risk assessments

 The prediction of risk for different environmental compartments is a crucial part of the registration process for active ingredients in OECD countries

The principle of mass balances

 A mass balance aims to elucidate the real exposure of environmental compartments in relation to the use of an active ingredient

Examples for Risk Assessments (1)

Surface Water

Assessment of surface water exposure

Idealized worst-case scenario with a large margin of safety

Example for Tier-I assessments: UK drainage model

If K_{OC} < 74 => **1.9** % of applied material is lost and further diluted in 130.000 L of drainflow and surface water

Example for Tier-I assessments: German drift model

Loadings of a ditch with 30 cm depth (example: vinejards)

Example for Tier-I assessments: U.S. surface water exposure model

10 % of product applied to a 10 acre field enters a 1 acre pond which is 1.8 m deep

Assessment of surface water exposure: Tier-II

syngenta

Worst case \rightarrow Reality

Worst case scenario

- →No buffer between crop and water
- →100% cropped
- →Drift from all directions
- →95%ile wind velocity
- →90%ile deposition
- →No degradation
- →All organisms affected

Reality

Models and field studies help to reflect real agricultural conditions.

Density of surface water network (km/km²) in Germany

Potential Paths of Entry into Surface Water

Identification of a realistic worst-case situation for runoff and erosion

Probability of occurrence of runoff producing rainfalls

(> 10 mm in 24 h)

Percentiles

Identification of a realistic worst-case situation for runoff and erosion

Soils vulnerable towards runoff and erosion

=> Fine textured soils with low infiltration rates, slopes, low organic matter content

Identification of a realistic worst-case situation for runoff and erosion

Soil properties Sand Silt Clay Organic Horizon . . . matter Realistic worst-case (%)(%) (%)(%)representing the xth 0 - 30 20 32 1.2 48 30 - 50 35 28 37 0.3 percentile Weather record **ETpot** Rain Temp Date Temp min max (°C) (mm) (mm) 1/1/1998 0.3 5.6 1/2/1998 11 0.8

Spatial variation of surface water exposure

Spatial variation of surface water exposure

How to assess exposure estimates?

Variation of surface water exposure with time

Due to the variability of various factors which govern pesticide loss to surface waters the simulations should be carried out for several years

=> Is a critical exposure level exceeded once every 5 years or once every 100 years?

Examples for Risk Assessments (2)

Groundwater

FOCUS standard scenarios

Requirements for Annex I listing:

"...The FOCUS scenarios collectively represent agriculture in the EU for the purposes of a Tier I EU level assessment of leaching risk"

"...scenarios which gave results less that 0.1 µg/L indicate the extent of safe uses.....and could then be used to guide local assessments of leaching risk at the member state level."

Assessment of groundwater exposure

Derivation of realistic worst-case scenarios

Examples for Risk Assessments (3)

Soil Persistence

Climatic risk areas for damage to rotational crops

From prediction of exposure to prediction of risk

Characteristics of <u>risk assessments</u> for pesticide losses to the environment

- Risk assessments operate with scenarios, even on a higher tier (e.g. assumption that a maximum use rate is applied)
- Worst-case estimates are used for parameters which are unknown or subject to high uncertainty
- Risk assessments are performed to evaluate the safety of a compound but do not reflect the real longterm exposure situation in a region or country.

Characteristics of mass balances for pesticide losses to the environment

- Mass balances are used to quantify loadings but usually cannot be used to calculate concentrations (e.g. in surface water)
- Mass balances should avoid the use of scenarios and are used to provide a correct representation of the longterm exposure situation in a country considering normal agricultural practice
- Mass balances are an attempt to consider all potential use and exposure situations
- Mass balances for the exposure to pesticides are usually done for larger spatial units (e.g. regions, countries)

Example for a regional mass balance

Mass balance: Use data

Where is the crop grown?

Where was the chemical used in year X?

Calculation of longterm losses with runoff

Which percentage would be washed off in a 10, 15, 20mm/24 h event ?

Mass balance: Rainfall probabilities

Re-occurrence intervals of significant events > 20 mm/d

How often do 10, 15, 20mm/24 h events occur?

What is the residue level at the beginning of a runoff event?

The rainfall re-occurrence interval is a probability function rather than an absolute value!

Probability density functions for amounts available for runoff for a given rainfall intervall

Amount available for runoff (kg/ha)

DT50 < 10

10 < DT50 < 100

DT50 > 100

Predicted runoff losses for rainfall volumes and the respective re-occurrence intervals

Landscape level exposure modeling

Option 1: GIS-model

Option 2: Link between GIS and e-fate models

Spatial modeling

25 km grid(long term daily weather records)

The simulation of all possible use situations with real weather data is not unrealistic but requires still a considerable amount of resources.

Conclusions

Risk Assessments

- Consist of specific scenarios
- Relate exposure with effects
- Include safety factors to address uncertainty issues
- Are used in regulatory assessment schemes

 $=> \mu g/L$, mg/kg etc.

Mass Balances

- Try to include all possible use situations
- Cannot be related to effects
- Provide confidence intervals to address uncertainty issues
- Are used in environmental status reports

=> t/year, kg/year etc.

syngenta