An Introduction to Input-Output LCA Theory and Methodology, its Strengths and Weaknesses and a Comparison between Input-Output LCA and Process LCA

Gregory A. Norris
Sylvatica / Harvard University / U. New Hampshire
USA

My Assumptions

- Know Process LCI
- Know enough about IO-LCI to be interested
- "How do PLCI and IO-LCI 'inputs' differ?"
 - Methods
 - Data sources
 - Assumptions
- "How does IO-LCI work?"
- "How do PLCA and IO-LCI 'outputs' differ?"
 - Results, conclusions, uncertainties
 - Applications

Outline

- Product LCI Reconsidered
 - Essentials
 - Matrix framing
- IO-LCI vis-à-vis Product LCI
- Differences
 - Data
 - Outcomes
- My Purposes:
 - Strip away misconceptions about differences
 - Focus on true remaining differences

Life Cycle Inventory Analysis

Unit Process defined

- ISO 14040: The level of detail at which life cycle inventory data are gathered.
 - Boiler
 - Coal steam power plant
- Note that PLCI databases usually report average data across a sample
 - Oil-fired industrial boilers
 - US coal steam power plants

Unit Process, PLCI

PLCI "Process Tree"

PLCI "Process Tree"

Assume for simplicity that each process has unit emissions of 1 kg / specified output.

We can solve for the LCI using a matrix formulation of the problem

Output results

 $e \equiv$

Process tree with loops... no difficulty for matrix method

Tier-wise output =

Subsequent slides:

- How do we develop the PLCI data?
- IO-LCA Data basis
- IO-LCA matrix model form and example
- If PLCA and IO-LCA are mathematically equivalent, why is IO-LCA interesting?
 - Data
 - Already collected
 - Comprehensive on inputs
 - Comprehensive on products
- Strengths, weaknesses of each
- Examples of boundary truncation analysis with IO LCA

Flexibility in Scope of Input Type

- Material / Energy inputs major
- Equipment, capital, infrastructure major
- Material / Energy inputs minor
- Overhead inputs (building, site, etc.)
- Service inputs
- Personnel-related expenses (travel, hotels...)
- Work-related employee expenditures (car,...)
- Delta-consumption due to employment demand
- (X) Total consumption of employees
- Profits (spending / re-investment)
- Taxes (spent by government)

Some slides which may also be used, follow...

Adding Pollution (or any impact): Basic Approach

 x_i = sector *i* economic output (\$/yr)

 p_{ij} = sector *i* pollutant *j* release (kg/yr)

$$\frac{p_{ij}}{y_i} = e_{ij} = \text{sector } i \text{ pollution}$$

intensity (kg/\$)

Data Discussion - USA

- Economic I/O Data
- Energy-related Air Emissions
- Toxic Release Inventory

The "Work Files"

- US Department of Commerce's Bureau of Economic Analysis (BEA)
- BEA creates the I/O tables from establishmentlevel Census data
- Work files are an unpublished, intermediate data product
- Most recently published: 1992
- 1997 data projected for 2001
- "Transactions" table: 1000 x 7000 detailed "Use" matrix (use of 7K items by 1K industries)

Energy-related Air Emissions

- CO₂, { CO, NO_x, SO₂, Particulates, VOCs }
- Approaches for estimating P_{ii} (kg/year, each sector, flow)
 - Carnegie-Mellon University approach:
 \$ fuel per year → kg or litres fuel per year → kg pollutant
 - Sylvatica approach:
 - CO2: Department of Energy data on fuel combusted per year
 - {"Criteria air pollutants"}: US EPA emissions inventories (kg/yr, each sector, each flow)
 - Needed: comparison of results; estimates of uncertainties;
 - Advantages of latter approaches:
 - More recent (1996 vs. 1992)
 - Continual improvement, millions of man-hours at state level
 - Capture non-energy-related process emissions (e.g., VOCs)
 - Avoid allocating combustion to feedstock uses
 - Avoid sectoral price difference impacts
- Main message: data selection and integration = model design

Toxic Release Inventory

- US EPA: Required plant-level annual reporting
- Manufacturing sectors, ~ 300 pollutants
- Need to characterize uncertainties due to:
 - Reporting/measurement/estimation error
 - Non-reporting
 - Non-reporting sectors
 - Non-reporting establishments within reporting sectors
 - Non-reported chemicals from reporting establishments
- Need to create adjusted e_{ii} intensities (kg/\$)